删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

具变号权函数的拟线性椭圆方程组多重解的存在性

本站小编 Free考研考试/2021-12-27

具变号权函数的拟线性椭圆方程组多重解的存在性 李圆晓1,2, 高文杰21. 河南工业大学理学院, 郑州 450001;
2. 吉林大学数学研究所, 长春 130012 Existence of Multiple Solutions for a Quasilinear Elliptic System Involving Sign-changing Weight Functions LI Yuanxiao1,2, GAO WENJIE21. College of Science, Henan University of Technology, Zhengzhou 450001, China;
2. Institute of Mathematics, Jilin University, Changchun 130012, China
摘要
图/表
参考文献
相关文章(5)
点击分布统计
下载分布统计
-->

全文: PDF(307 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文研究了具变号权函数的拟线性椭圆方程组多重解的存在性,通过运用变分法,作者得出问题在一定的条件下至少存在两个非平凡非负解.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2011-10-17
PACS:O175.2
基金资助:国家自然科学基金(10771085)资助项目.
引用本文:
李圆晓, 高文杰. 具变号权函数的拟线性椭圆方程组多重解的存在性[J]. 应用数学学报, 2018, 41(1): 71-82. LI Yuanxiao, GAO WENJIE. Existence of Multiple Solutions for a Quasilinear Elliptic System Involving Sign-changing Weight Functions. Acta Mathematicae Applicatae Sinica, 2018, 41(1): 71-82.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2018/V41/I1/71


[1] Bozhkov Y, Mitidieri E. Existence of multiple solutions for quasilinear systems via fibering method. J. Differential Equations, 2003, 190:239-267
[2] Djellit A, Tas S. On some nonlinear elliptic systems. Nonlinear Anal., 2004, 59:695-706
[3] Furtado M F, dePaiva F O V. Multiplicity of solutions for resonant elliptic systems. J. Math. Anal. Appl., 2006, 319(2):435-449
[4] GarciaAzorero J, PeralAlonso I, Rossi J D. A convex-concave problem with a nonlinear boundary condition. J. Differential Equations, 2004, 198:91-128
[5] Wu, T F. Multiplicity results for a semilinear elliptic equation involving sign-changing weight function. Rocky Mountain J. Math., 2009, 39(3):995-1011
[6] Wu T F. Multiple positive solutions for a class of concave-convex elliptic problems in RN involving sign-changing weight. Journal of Functional Analysis, 2010, 258(1):99-131
[7] GarciaAzorero J, PeralAlonso I. Some results about the existence of a second positive solution in a quasilinear critical problem. Indiana University Mathematics Journal, 1994, 43(3):941-957
[8] GarciaAzorero J, PeralAlonso I, Manfredi J.J. Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations. Communications in Contemporary Mathematics, 2000, 2(3):385-404
[9] Ambrosetti A, Brezis H, Cerami G. Combined effects of concave and convex nonlinearities in some elliptic problems. Journal of Functional Analysis, 1994, 122(2):519-543
[10] Wu T F. The Nehari manifold for a semilinear elliptic system involving sign-changing weight functions. Nonlinear Anal., 2008, 68:1733-1745
[11] Alves C O, de Morais Filho D C, Souto M A S. On systems of elliptic equations involving subcritical or critical Sobolev exponents. Nonlinear Anal., 2000, 42:771-787
[12] Wu T F. A semilinear elliptic problem involving nonlinear boundary condition and sign-changing potential. Electron. J. Differential Equations, 2006, 131:1-15
[13] Wu T F. Multiple positive solutions for semilinear elliptic systems with nonlinear boundary condition. Applied Mathematics and Computation, 2007, 189:1712-1722
[14] Hsu T S. Multiple positive solutions for a critical quasilinear elliptic system with concave-convex nonlinearities. Nonlinear Anal., 2009, 71:2688-2698
[15] Drabek P, Pohozaev S I. Positive solutions for the p-Laplacian:Application of the fibering method. Proc. Roy. Soc. Edinburgh Sect., 1997, A127:703-726
[16] Brown K J, Zhang Y. The Nehari manifold for a semilinear elliptic equation with a sign changing weight function. J. Differential Equations, 2003, 193:481-499
[17] Brown K J, Wu T F. A semilinear elliptic system involving nonlinear boundary condition and signchanging weight function. J. Math. Anal. Appl., 2008, 337:1326-1336

[1]焦海涛, 马晓艳, 郭青, 贺小明. 一类具衰减位势的Schrödinger-Poisson方程变号基态解的存在性[J]. 应用数学学报, 2016, 39(6): 897-916.
[2]廖芳芳, 唐先华, 张健. IRN上周期Hamilton型椭圆系统新的超线性条件[J]. 应用数学学报, 2015, 38(6): 987-1000.
[3]樊自安. 包含次临界和临界Sobolev指数的椭圆方程组解的存在性[J]. 应用数学学报, 2015, 38(5): 834-844.
[4]汪继秀. 一类带非线性边值条件的半线性椭圆方程组的多个解[J]. 应用数学学报(英文版), 2014, 37(2): 332-342.
[5]谢鸿政, 谢鸿伟. 非线性Volterra积分方程非平凡解的逼近方法及其应用[J]. 应用数学学报(英文版), 1995, 18(4): 499-509.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14441
相关话题/应用数学 统计 系统 河南 理学院