删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

部分线性函数多项式模型的联合探测

本站小编 Free考研考试/2021-12-27

部分线性函数多项式模型的联合探测 张涛1, 万艳玲2, 王智文31. 广西科技大学理学院, 柳州 545006;
2. 广西科技大学社会科学学院, 柳州 545006;
3. 广西科技大学计算机科学与通讯工程学院, 柳州 545006 Joint Detection for Partial Linear Functional Polynomial Model ZHANG Tao1, WAN Yanling2, WANG Zhiwen31. School of Science, Guangxi University of Science and Technology, Liuzhou 545006, China;
2. School of Social Sciences, Guangxi University of Science and Technology, Liuzhou 545006, China;
3. School of Computer Science and Communication Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
摘要
图/表
参考文献
相关文章(2)
点击分布统计
下载分布统计
-->

全文: PDF(412 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文提出了一个新的部分线性函数多项式回归模型,该模型中响应变量依赖于一个p阶函数多项式和一些非函数型数据的协变量.函数多项式模型、函数线性模型和部分函数线性模型是该模型的特殊情形.本文提出了一个模型探测方法,它能同时探测部分线性函数多项式回归模型中哪些阶是重要的以及哪些非函数型变量是重要的.提出的方法能相合地识别真实的模型并有好的预测表现.数值模拟能清晰地证实我们的理论结果.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2015-03-08
PACS:O212.7
基金资助:国家自然科学基金(11561006,61462008),广西高校科学技术研究项目(KY2015YB171),柳州市科学技术研究项目(2016C050205),以及广西科技大学创新团队项目(gxkjdx201504)资助.
引用本文:
张涛, 万艳玲, 王智文. 部分线性函数多项式模型的联合探测[J]. 应用数学学报, 2018, 41(1): 110-123. ZHANG Tao, WAN Yanling, WANG Zhiwen. Joint Detection for Partial Linear Functional Polynomial Model. Acta Mathematicae Applicatae Sinica, 2018, 41(1): 110-123.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2018/V41/I1/110


[1] Ramsay J, Silverman B, Functional Data Analysis, Second ed. Berlin:Springer, 2005
[2] Ferraty F, Vieu P. Nonparametric Functional Data Analysis. New York:Springer, 2006
[3] Cai T T, Hall P. Prediction in functional linear regression. Ann. Statist., 2006, 34:2159-2179
[4] Hall P, Horowitz J L. Methodology and convergence rates for functional linear regression. Ann.Statist, 2007, 35:70-91
[5] Yao F, Müller H G, Wang J L. Functional data analysis for sparse longitudinal data. J. Amer. Statist. Assoc., 2005, 100:577-590
[6] Ferraty F, Keilegom I, Vieu P. Regression when both response and predictor are functions. Journal of Multivariate Analysis, 2012, 109:10-28
[7] Müller H G, Stadtmüller U. Generalized functional linear models. Ann. Statist., 2005, 33:774-805
[8] Ait-Saïdi A, Ferraty F, Kassa R, Vieu P. Cross-validated estimations in the single-functional index model. Statistics, 2008, 42:475-494
[9] Chen D, Hall P, Müller H G. Single and multiple index functional regression models with nonparametric link. Ann. Statist., 2011, 39:1720-1747
[10] Li Y H, Wang Naisyin, Carroll R J. Generalized functional linear models with semiparametric singleindex interactions. J. Amer. Statist. Assoc., 2010, 105:621-633
[11] Yao F, Müller H G. Functional quadratic regression. Biometrika, 2010, 97:49-64
[12] Shin H. Partial functional linear regression. Journal of Statistical Planning and Inference, 2009, 139; 3405-3418
[13] Zou H. The Adaptive LASSO and Its Oracle Properties. Journal of the Ameriean Statistical Association, 2006, 101:1418-1429
[14] Zhang H H, Lu W. Adaptive lasso for Cox's proportional hazard model. Biometrika, 2007, 94:691-703
[15] Wang H, Xia Y. Shrinkage Estimation of the Varying Coefficient Model. Journal of the Ameriean Statistical Association, 2009, 104:747-757
[16] Lian H. Shrinkage estimation and selection for multiple functional regression. Statistica Sinica, 2013, 23:51-74
[17] Amatoa U, Antoniadisb A, Feisa I D. Dimension reduction in functional regression with applications. Computational Statistics and Data Analysis, 2006, 50:2422-2446
[18] Ferraty F, Hall P, Vieu P. Most predictive design points for functional data predictor. Biometrika, 2010, 97:807-824

[1]王亚飞, 杜江, 张忠占. 相依误差下部分函数型线性模型的估计[J]. 应用数学学报, 2017, 40(1): 49-65.
[2]张文文. 回归系数的主相关估计及其优良性[J]. 应用数学学报(英文版), 1996, 19(4): 566-570.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14444
相关话题/广西科技大学 应用数学 统计 广西 计算机科学