[1] Kiers H A. Setting up alternating least squares and iterative majorization algorithms for solving various matrix optimization problems[J]. Computational statistics & data analysis, 2002, 41(1):157-170. [2] Kiers H A, ten Berge J M. Minimization of a class of matrix trace functions by means of refined majorization[J]. Psychometrika, 1992, 57(3):371-382. [3] Kiers H A. Majorization as a tool for optimizing a class of matrix functions[J]. Psychometrika, 1990, 55(3):417-428. [4] Kanamori T, Takeda A. Numerical study of learning algorithms on Stiefel manifold[J]. Computational Management Science, 2014, 11(4):319-340. [5] Lai R, Osher S. A splitting method for orthogonality constrained problems[J]. Journal of Scientific Computing, 2014, 58(2):431-449. [6] Chen W, Ji H, You Y. An Augmented Lagrangian Method for 1-Regularized Optimization Problems with Orthogonality Constraints[J]. SIAM Journal on Scientific Computing, 2016, 38(4):B570-B592. [7] Manton J H. Optimization algorithms exploiting unitary constraints[J]. IEEE Transactions on Signal Processing, 2002, 50(3):635-650. [8] Abrudan T E, Eriksson J, Koivunen V. Steepest descent algorithms for optimization under unitary matrix constraint[J]. IEEE Transactions on Signal Processing, 2008, 56(3):1134-1147. [9] Wen Z, Yin W. A feasible method for optimization with orthogonality constraints[J]. Mathematical Programming, 2013, 142(1-2):397-434. [10] Oviedo H, Lara H, Dalmau O. A non-monotone linear search algorithm with mixed direction on Stiefel manifold[J]. Optimization Methods and Software, 2019, 34(2):437-457. [11] Edelman A, Arias T A, Smith S T. The geometry of algorithms with orthogonality constraints[J]. SIAM journal on Matrix Analysis and Applications, 1998, 20(2):303-353. [12] Sato H, Iwai T. A Riemannian optimization approach to the matrix singular value decomposition[J]. SIAM Journal on Optimization, 2013, 23(1):188-212. [13] Zhu X. A Riemannian conjugate gradient method for optimization on the Stiefel manifold[J]. Computational Optimization and Applications, 2017, 67(1):73-110. [14] Vandereycken B. Low-rank matrix completion by Riemannian optimization[J]. SIAM Journal on Optimization, 2013, 23(2):1214-1236. [15] Zhao Z, Jin X Q, Bai Z J. A geometric nonlinear conjugate gradient method for stochastic inverse eigenvalue problems[J]. SIAM Journal on Numerical Analysis, 2016, 54(4):2015-2035. [16] Yao T T, Bai Z J, Zhao Z, Ching W K. A Riemannian Fletcher-Reeves Conjugate Gradient Method for Doubly Stochastic Inverse Eigenvalue Problems[J]. SIAM Journal on Matrix Analysis and Applications, 2016, 37(1):215-234. [17] Yao T T, Bai Z J, Zhao Z. A Riemannian variant of the Fletcher-Reeves conjugate gradient method for stochastic inverse eigenvalue problems with partial eigendata[J]. Numerical Linear Algebra with Applications, 2019, 26(2):e2221. [18] Hu J, Milzarek A, Wen Z, Yuan Y. Adaptive quadratically regularized Newton method for Riemannian optimization[J]. SIAM Journal on Matrix Analysis and Applications, 2018, 39(3):1181-1207. [19] Sato H. Riemannian Newton-type methods for joint diagonalization on the Stiefel manifold with application to independent component analysis[J]. Optimization, 2017, 66(12):2211-2231. [20] Absil P A, Mahony R, Sepulchre R. Optimization algorithms on matrix manifolds[M]. Princeton University Press, 2009. [21] Gao B, Liu X, Chen X, xiang Yuan Y. A new first-order algorithmic framework for optimization problems with orthogonality constraints[J]. SIAM Journal on Optimization, 2018, 28(1):302-332. [22] Nishimori Y, Akaho S. Learning algorithms utilizing quasi-geodesic flows on the Stiefel manifold[J]. Neurocomputing, 2005, 67:106-135. [23] Zhang L, Zhou W, Li D H. A descent modified Polak-Ribière-Polyak conjugate gradient method and its global convergence[J]. IMA Journal of Numerical Analysis, 2006, 26(4):629-640. [24] Zhang L, Zhou W, Li D. Global convergence of a modified Fletcher-Reeves conjugate gradient method with Armijo-type line search[J]. Numerische Mathematik, 2006, 104(4):561-572. [25] Dai Y. A nonmonotone conjugate gradient algorithm for unconstrained optimization[J]. Journal of System Science and Complexity, 2002, 15:139-145. [26] Zhang H, Hager W W. A nonmonotone line search technique and its application to unconstrained optimization[J]. SIAM journal on Optimization, 2004, 14(4):1043-1056. |