删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

二维等谱问题研究的计算数学框架

本站小编 Free考研考试/2021-12-27

孙家昶, 张娅
中国科学院软件研究所并行软件与计算科学实验室, 北京 100190
收稿日期:2017-03-15出版日期:2017-08-15发布日期:2017-08-04


基金资助:国家重点研发计划高性能计算重点专项(2016YFB0200601)、国家自然科学基金(91530323,91230109)、国家自然科学基金青年基金(11301507)资助


FRAMEWORK OF COMPUTATIONAL MATHEMATICS ON 2-D PDE ISO-SPECTRAL PROBLEMS

Sun Jiachang, Zhang Ya
Laboratory of Parallel Software and Computational Science, Institute of Software, Chinese Academy of Sciences, Beijing 100190, China
Received:2017-03-15Online:2017-08-15Published:2017-08-04







摘要



编辑推荐
-->


等谱问题是数学、物理诸学科关注的一个热点问题,本文总结并诠释了二维等谱问题的内在计算数学性质与规律:利用镜像反演讨论等谱对的几何结构(不等距而谱相等);把一般文献中假定的特殊三角形扩展到一般的三角形或者矩形;研究特征函数的正交结构,把特定的Laplace等谱问题扩展到一般零边值的二阶线性椭圆算子等谱问题.指出合理的粗网格对于研究等谱问题及其计算的重要性:两个连续问题等谱成立的充分必要条件是存在自然粗网格使其离散问题谱相等.文中给出的数值例子与特征值近似逼近验证了相应的结论,所用的方法原则上可用于研究三维乃至高维的PDE等谱问题.
MR(2010)主题分类:
65F15
65N25
65N30

分享此文:


()

[1] Kac M. Can one hear the shape of a drum[J]. Am. Math. Monthly, 1966, 73(4): 1-23.

[2] Milnor J. Eigenvalues of the Laplace operator on certain manifolds[J]. Proc. Natl. Acad. Sci. USA, 1964, 51:542.

[3] Giraud O and Thas K. Hearing shapes of drums-mathematical and physical aspects of isosectrality[J]. Rev. Mod. Phys., 2011, 82(3): 2213-2255.

[4] Gordon C, Webb D and Wolpert S. You cannot hear the shape of a drum[J]. B. Am. Math. S., 1992, 27(1): 134-138.

[5] Sunada T. Riemannian coverings and isospectral manifolds[J]. Ann. of Math., 1985, 121(1): 169-186.

[6] Buser P, Conway J, Doyle P and Semmler K D. Some Planar Isospectral Domains[J]. Internat. Math. Res. Notices, 1994, 9: 391-402.

[7] Gordon C, Webb D and Wolpert S. Isospectral plane domains and durfaces via Riemannian orbifolds[J]. Invent. Math., 1992, 110: 1-22.

[8] Bérard P. Variétés Riemanniennes isospectrales non isométriques[J]. Astérisque, 1989, 177-178: 127-154.

[9] Bérard P. Transplantation et isospectralité[J]. Math. Ann., 1992, 292: 547-559.

[10] Chapman S J. Drums that sound the same[J]. Am. Math. Monthly, 1995, 102(2): 124-138.

[11] Wu H, Sprung D and Martorell J. Numerical investigation of isospectral cavities built from triangles[J]. Phys. Rev. E, 1995, 51: 703-708.

[12] Sridhar S and Kudrolli A. Experiments on not hearing the shape of drum[J]. Phys. Rev. Lett. 1994, 72(14): 2175-8.

[13] Driscoll T. Eigenmodes of isospectral drums[J]. SIAM. REV., 1997, 39(1): 1-17.

[14] Amore P, Boyd J P, Ferández F M and Rösler B. High order eigenvalues for the Helmholtz equation in complicated non-tensor domains through Richardson extrapolation of second order finite differences[J]. J. Comput. Phys., 2016, 312: 252-271.

[15] Moon C R, Mattos L S, Foster B K, Zeltzer G, Ko W and Manoharn H C. Quantum Phase Extraction in Isospectral Electronic Nanostructures[J]. Science, 2008, 319:782-787.

[16] 冯康. 冯康文集(Ⅱ)[M]. 国防工业出版社, 1995.

[17] Singer I M. Eigenvalues of the laplacian and invariants of manifolds[J]. Proc. Inter. Congr. Math., 1974, 1, Vancouver.

[18] Sleeman B D and Chen H. On nonisometric iso-spectral connected fractal domains[J]. Rev. Mat. Iberoam, 2000, 16: 351-361.

[19] 陈化. 你能听到一面鼓的几何形状吗-谈谈等谱问题[J]. 数学通报, 2014, 53(5): 3-8.

[20] Petrobski. Lecture On Partial Differential Equations[M]. (in Russian) 1961.

[21] Glowinski R. A numerical investigation of the properties of the Nodal Lines of the solutions of linear and nonlinear eigenvalue problems[C]. International Conference on Scientific Computing, 2012, Hongkong.

[22] Bonito A and Glowinski R. On the nodal set of the eigenfunctions of the Laplace-Beltrami operator for bounded surfaces in R3: A computational approach[J]. Commun. Pure Appl. Anal., 2014, 13(5): 2115-2126.

[23] Levitin M, Parnovski L and Polterovich I. Isospectral domains with mixed boundary conditions[J]. J. Phys. A: Math. Gen., 2006,39(9): 2073-2084.

[24] Sun J C. Orthogonal piece-wise polynomials basis on an arbitrary triangular domain and its applications[J]. J Comput Math, 2001, 19(1): 55-66.

[25] Sun J C. Fourier Transforms and Othogonal Polynomials on Non-traditional Domains, Chinese University of Science and Techlonogy[M]. 2009(In Chinese).

[26] Lai R J. Computational differential geometry and intrinsic surface processing[D]. Ph.D. thesis, 2010, University of California Los Angeles.

[27] Moorhead S. Can you hear the shape of a cavity[D]. Ph.D. thesis, 2012, University of Oxford.

[28] Sun J C. Multi-Neighboring Grids Schemes for solving PDE eigen-problems[J]. Sci China Math, 2013, 56: 2677-2700.

[29] Sun J C. New schemes with fractal error compensation for PDE eigenvalue computations[J]. Sci China Math, 2014, 57: 221-244.

[30] 孙家昶, 曹建文, 张娅. 偏微分方程特征值计算的上下界分析与高精度格式构造[J]. 中国科学: 数学, 2015, 45(8): 1169-1191.

[1]刘小会, 曹建文, 张娅. 重访听音辩鼓问题[J]. 计算数学, 2018, 40(1): 63-84.

--> -->
阅读次数
全文







摘要





Cited

Shared






PDF全文下载地址:

http://www.computmath.com/jssx/CN/article/downloadArticleFile.do?attachType=PDF&id=55
相关话题/计算 数学 结构 软件 中国科学院