[1] Kac M. Can one hear the shape of a drum[J]. Am. Math. Monthly, 1966, 73(4): 1-23.
[2] Milnor J. Eigenvalues of the Laplace operator on certain manifolds[J]. Proc. Natl. Acad. Sci. USA, 1964, 51:542.
[3] Giraud O and Thas K. Hearing shapes of drums-mathematical and physical aspects of isosectrality[J]. Rev. Mod. Phys., 2011, 82(3): 2213-2255.
[4] Gordon C, Webb D and Wolpert S. You cannot hear the shape of a drum[J]. B. Am. Math. S., 1992, 27(1): 134-138.
[5] Sunada T. Riemannian coverings and isospectral manifolds[J]. Ann. of Math., 1985, 121(1): 169-186.
[6] Buser P, Conway J, Doyle P and Semmler K D. Some Planar Isospectral Domains[J]. Internat. Math. Res. Notices, 1994, 9: 391-402.
[7] Gordon C, Webb D and Wolpert S. Isospectral plane domains and durfaces via Riemannian orbifolds[J]. Invent. Math., 1992, 110: 1-22.
[8] Bérard P. Variétés Riemanniennes isospectrales non isométriques[J]. Astérisque, 1989, 177-178: 127-154.
[9] Bérard P. Transplantation et isospectralité[J]. Math. Ann., 1992, 292: 547-559.
[10] Chapman S J. Drums that sound the same[J]. Am. Math. Monthly, 1995, 102(2): 124-138.
[11] Wu H, Sprung D and Martorell J. Numerical investigation of isospectral cavities built from triangles[J]. Phys. Rev. E, 1995, 51: 703-708.
[12] Sridhar S and Kudrolli A. Experiments on not hearing the shape of drum[J]. Phys. Rev. Lett. 1994, 72(14): 2175-8.
[13] Driscoll T. Eigenmodes of isospectral drums[J]. SIAM. REV., 1997, 39(1): 1-17.
[14] Amore P, Boyd J P, Ferández F M and Rösler B. High order eigenvalues for the Helmholtz equation in complicated non-tensor domains through Richardson extrapolation of second order finite differences[J]. J. Comput. Phys., 2016, 312: 252-271.
[15] Moon C R, Mattos L S, Foster B K, Zeltzer G, Ko W and Manoharn H C. Quantum Phase Extraction in Isospectral Electronic Nanostructures[J]. Science, 2008, 319:782-787.
[16] 冯康. 冯康文集(Ⅱ)[M]. 国防工业出版社, 1995.
[17] Singer I M. Eigenvalues of the laplacian and invariants of manifolds[J]. Proc. Inter. Congr. Math., 1974, 1, Vancouver.
[18] Sleeman B D and Chen H. On nonisometric iso-spectral connected fractal domains[J]. Rev. Mat. Iberoam, 2000, 16: 351-361.
[19] 陈化. 你能听到一面鼓的几何形状吗-谈谈等谱问题[J]. 数学通报, 2014, 53(5): 3-8.
[20] Petrobski. Lecture On Partial Differential Equations[M]. (in Russian) 1961.
[21] Glowinski R. A numerical investigation of the properties of the Nodal Lines of the solutions of linear and nonlinear eigenvalue problems[C]. International Conference on Scientific Computing, 2012, Hongkong.
[22] Bonito A and Glowinski R. On the nodal set of the eigenfunctions of the Laplace-Beltrami operator for bounded surfaces in R3: A computational approach[J]. Commun. Pure Appl. Anal., 2014, 13(5): 2115-2126.
[23] Levitin M, Parnovski L and Polterovich I. Isospectral domains with mixed boundary conditions[J]. J. Phys. A: Math. Gen., 2006,39(9): 2073-2084.
[24] Sun J C. Orthogonal piece-wise polynomials basis on an arbitrary triangular domain and its applications[J]. J Comput Math, 2001, 19(1): 55-66.
[25] Sun J C. Fourier Transforms and Othogonal Polynomials on Non-traditional Domains, Chinese University of Science and Techlonogy[M]. 2009(In Chinese).
[26] Lai R J. Computational differential geometry and intrinsic surface processing[D]. Ph.D. thesis, 2010, University of California Los Angeles.
[27] Moorhead S. Can you hear the shape of a cavity[D]. Ph.D. thesis, 2012, University of Oxford.
[28] Sun J C. Multi-Neighboring Grids Schemes for solving PDE eigen-problems[J]. Sci China Math, 2013, 56: 2677-2700.
[29] Sun J C. New schemes with fractal error compensation for PDE eigenvalue computations[J]. Sci China Math, 2014, 57: 221-244.
[30] 孙家昶, 曹建文, 张娅. 偏微分方程特征值计算的上下界分析与高精度格式构造[J]. 中国科学: 数学, 2015, 45(8): 1169-1191. |