[1] Friedrichs O. Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids[J]. J. Comput. Phys, 1998, 144(1): 194-212.[2] Abgrall R. On Essentially Non-oscillatory Schemes on Unstructured Meshes: Analysis and Implementation[J]. J. Comput. Phys, 1994, 114(1): 45-58.[3] Hu C, Shu C W. Weighted essentially non-oscillatory schemes on triangular meshes[J]. J. Comput. Phys., 150(1): 97-127.[4] Wolf W R M, Azevedo J L F. High order ENO and WENO schemes for unstructured grids[J]. Int. J. Numer. Mech. Fluids, 2007, 55(10): 917-943.[5] Zhang Y T, Shu C W. Third Order WENO Scheme on Three Dimensional Tetrahedral Meshes[J]. Comm. Comp. Phys., 2009, 5(2-4): 836-848.[6] Zhang X, Shu C W. On maximum-principle-satisfying high order schemes for scalar conservation laws[J]. J. Comput. Phys., 2010, 229(9): 3091-3120.[7] Zhang X, Shu C W. On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes[J]. J. Comput. Phys., 2010, 229(23): 8918-8934.[8] Zhang X X, Xia Y H, Shu C W. Maximum-principle-satisfying and positivity-preserving high order discontinuous Galerkin schemes for conservation laws on triangular meshes[J]. J. Sci. Comp., 2012, 50(1): 29-62.[9] Xiong T, Qiu J M, Xu Z. A parametrized maximum principle preserving flux limiter for finite difference RK-WENO schemes with applications in incompressible flows[J]. J. Comput. Phys., 2013, 252(11): 310-331.[10] Christlieb A, Liu Y, Tang Q, Xu Z F. High order parametrized maximum-principle-preserving and positivity-preserving WENO schemes on unstructured meshes[J]. J. Comput. Phys., 2015, 281: 334-351.[11] 张来平, 刘伟, 贺立新, 邓小刚, 张涵信. 一种新的间断侦测器及其在DGM中的应用[J]. 空气动力学报, 2011, 29(4): 401-406.[12] Cockbu宋松和, 李荫藩. 解二维标量双曲型守恒律的一类满足极值原理的无结构三角形网格有限体积法[J]. 数值计算与计算机应用, 1997, 18(2): 106-113.[13] 唐玲艳, 傅浩, 宋松和. 三维非结构网格上求解双曲型守恒律方程的一类三阶精度有限体积格式[J]. 数值计算与计算机应用, 2013, 34(3): 212-220.[14] Cockburn B, Shu C W. Runge-Kutta discontinuous Galerkin methods for convection-dominated problems[J]. J. Scientific Comput., 2001, 16: 173-261. |