[1] 吕慧.计算大规模稀疏矩阵函数乘向量的Krylov子空间算法[D].清华大学, 2014.[2] Jia Z, Lv H. A posteriori error estimates of Krylov subspace approximations to matrix functions. Numerical Algorithms, 2015, 69(1):1-28.[3] Fika P, Mitrouli M, Roupa P. Estimates for the bilinear form xT A-1y with applications to linear algebra problems. Electronic Transactions on Numerical Analysis, 2014, 43:70-89.[4] Abramowitz M, Stegun I A. Handbook of mathematical functions:with formulas, graphs, and mathematical tables, volume 55. Courier Corporation, 1964.[5] Bai Z, Fahey G, Golub G. Some large-scale matrix computation problems. Journal of Computational and Applied Mathematics, 1996, 74(1-2):71-89.[6] Bai Z, Golub G. Computation of large-scale quadratic forms and transfer functions using the theory of moments, quadrature and Padé approximation. Proceedings of Modern Methods in Scientific Computing and Applications. Springer, 2002:1-30.[7] Calvetti D, Kim S M, Reichel L. Quadrature rules based on the Arnoldi process. SIAM Journal on Matrix Analysis and Applications, 2005, 26(3):765-781.[8] Golub G. Matrix Computation and the Theory of Moments. Birkhäuser, Basel, 1995:1440-1448.[9] Golub G H, Meurant G. Matrices, moments and quadrature. Pitman Research Notes In Mathematics Series, 1994. 105-105.[10] Golub G H, Meurant G. Matrices, moments and quadrature II; how to compute the norm of the error in iterative methods. BIT Numerical Mathematics, 1997, 37(3):687-705.[11] Golub G H, Strakošs Z. Estimates in quadratic formulas. Numerical Algorithms, 1994, 8(2):241-268.[12] Guo H, Renaut R A. Estimation of uTf(A)v for large scale unsymmetric matrices. Numerical Linear Algebra with Applications, 2004, 11(1):75-89.[13] 郭洪斌.矩阵函数双线性形式的计算及其应用[D].复旦大学, 1999.[14] Strakoš Z. Model reduction using the Vorobyev moment problem. Numerical Algorithms, 2009, 51(3):363-379. |