[1] Morris G L, Odell P L. Common solutions for n matrix equations with applications[J]. Journal of the Association for Computing Machinery, 1968, 15(2):272-274.[2] Mitra S K. Common solutions to a pair of linear matrix equations A1XB1=C1 and A2XB2=C2[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1973, 74(2):213-216.[3] Mitra S K. A pair of simultaneous linear matrix equations A1XB1=C1, A2XB2=C2 and a matrix programming problem[J]. Linear Algebra Appl., 1990, 131:107-123.[4] Chu K E. Singular value and generalized singular value decompositions and the solution of linear matrix equations[J]. Linear Algebra Appl., 1987, 88/89:83-98.[5] Navarra A, Odell P L, Young D M. A representation of the general common solution to the matrix equations A1XB1=C1 and A2XB2=C2 with applications[J]. Comput. Math. Appl., 2001, 41:929-935.[6] Peng Z Y, Hu X Y, Zhang L. The nearest bisymmetric solutions of linear matrix equations[J]. J. Comput. Math., 2004, 22(6):873-880.[7] Dehghan M, Hajarian M. The(R, S)-symmetric and (R, S)-skew symmetric solutions of the pair of matrix equations A1XB1=C1 and A2XB2=C2[J].Bulletin of the Iranian Mathematical Society, 2011, 37(3):269-279.[8] 姚健康. 求解相容的矩阵方程组A1XB1=D1,A2XB2=D2的一种迭代法[J]. 南京师大学报(自然科学版), 2001, 24(1):6-10.[9] Peng Y X, Hu X Y, Zhang L. An iterative method for symmetric solutions and optimal approximation solution of the system of matrix equations A1XB1=C1, A2XB2=C2[J]. Appl. Math. Comput., 2006, 183:1127-1137.[10] Cai J, Chen G L, Liu Q B. An iterative method for the bisymmetric solutions of the consistent matrix equations A1XB1=C1,A2XB2=C2[J]. International Journal of Computer Mathematics(Section B), 2010, 87(12):2706-2715.[11] 田小红,,张凯院. 求一般线性矩阵方程组中心对称解的迭代算法[J]. 数学物理学报, 2011,31A(6):1526-1536.[12] 刘先霞. 几类特殊类型约束矩阵方程迭代算法的研究[D]. 长沙:湖南大学, 2013.[13] 李姣芬, 张晓宁, 彭振赟. 基于交替投影算法求解单变量线性约束矩阵方程问题[J]. 计算数学, 2014, 36(2):143-162.[14] 张贤达. 矩阵分析与应用[M]. 北京:清华大学出版社, 2011, 271-278.[15] 彭振赟. 几类矩阵扩充问题和几类矩阵方程问题[D]. 长沙:湖南大学, 2003. |