[1] Alfeld P and Sirvent M. The structure of multivariate superspline spaces of high degree[J]. Math. Comp., 1991, 57(195):299-308.[2] Argyris J H, Fried I, Scharpf D W. The TUBA family of plate elements for the matrix displacement method[J]. The Aeronautical Journal of the Royal Aeronautical Society, 1968, 72:514-517.[3] Bell K. A refined triangular plate bending element[J]. Internal. J. Numer. methods Engrg, 1969, 1:101-122.[4] Bogner F K, Fox R L and Schmit L A. The generation of interelement compatible stiffness and mass matrices by the use of interpolation formulas. Proceedings of the conference on Matrix Methods in Structural Mechanics, Wright Patterson A.F.B. Ohio, 1965.[5] Ciarlet P G. The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978.[6] Douglas Jr J, Dupont T, Percell P, Scott R. A family of C1 finite elements with optimal approximation properties for various Galerkin methods for 2nd and 4th order problems[J]. RAIRO Anal. Numer., 1979, 13:227-255.[7] Fraeijs de Veubeke B. A conforming finite element for plate bending. in:O.C. Zienkiewicz and G.S. Holister (Eds.), Stress Analysis, Wiley, New York, 1965, 145-197.[8] Heindl G. Interpolation and approximation by piecewise quadratic C1-functions of two variables[J]. International Schriftenreihe Numerical Mathematics, 1979, 51:146-161.[9] Hu J, Huang Y and Zhang S. The lowest order differentiable finite element on rectangular grids[J]. SIAM J. Numer. Anal., 2011, 49(4):1350-1368.[10] Hu J and Zhang S. The minimal conforming Hk finite element spaces on Rn rectangular grids[J]. Math. Comp., 2015, 84(292):563-579.[11] Lai M J and Schumaker L L. On the approximation power of bivariate splines[J]. Adv. in Comp. Math., 1998, 9:251-279.[12] Morgan J, Scott L R. A nodal basis for C1 piecewise polynomials of degree n[J]. Math. comp., 1975, 29:736-740.[13] Morley L S D. The triangular equilibrium element in the solution of plate bending problems[J]. Aero. Quart., 1968, 19:149-169.[14] Percell P. On cubic and quartic Clough-Tocher finite elements[J]. SIAM J. Numer. Anal., 1976, 13:100-103.[15] Powell M J D, Sabin M A. Piecewise quadratic approximations on triangles[J]. ACM Transactions on Mathematical Software, 1977, 3-4:316-325.[16] Ruas V. A quadratic finite element method for solving biharmonic problems in Rn[J]. Numer. Math., 1988, 52:33-43.[17] Sander G. Bornes supérieures et inférieures dans l'analyse matricielle des plaques en flexion-torsion[J]. Bull. Sco. Roy. Sci. Liége, 1964, 33:456-494.[18] Schumaker L L. On super splines and finite elements[J]. SIAM J. Numer. Anal., 1989, 26:997-1005.[19] Schumaker L L and Sorokina T. C1 quintic splines on type-4 tetrahedral partitions[J]. Adv. in Comp. Math., 2004, 21:421-444.[20] Sorokina T and Worsey A J. A multivariate Powell-Sabin interpolant[J]. Adv. Comput. Math.,2008, 29(1):71-89.[21] Sorokina T. C1 multivariate Clough-Tocher interpolant[J]. Constr. Approx., 2009, 29(1):41-59.[22] Sorokina T. A C1 cross polytope macro-element in four variables. Approximation theory XI:Gatlinburg 2004, 405-422, Mod. Methods Math., Nashboro Press, Brentwood, TN, 2005.[23] Wang M and Xu J. The Morley element for fourth order elliptic equations in any dimensions[J]. Numer. Math., 2006, 103(1):155-169.[24] Wang M, Shi Z C and Xu J. Some n-rectangle nonconforming finite elements for fourth order elliptic equations[J]. J. Comput. Math., 2007, 25(4):408-420.[25] Wang M, Shi Z C and Xu J. A new class of Zienkiewicz-type non-conforming element in any dimensions[J]. Numer. Math., 2007, 106:335-347.[26] Yang Y, Lin F and Zhang Z. N-simplex Crouzeix-Raviart element for the second-order elliptic/eigenvalue problems[J]. Int. J. Num. Anal. Mod., 2009, 6(4):615-626.[27] ?enišek A. Interpolation polynomials on the triangle[J]. Numer. Math., 1970, 15:283-296.[28] ?enišek A. Polynomial approximation on tetrahedrons in the finite element method[J]. J. Approximation Theory, 1973, 7:334-351.[29] ?enišek A. A general theorem on triangular Cm elements[J]. RAIROModel. Math. Anal. Numer., 1974, 22:119-127.[30] Zhang S. A family of 3D continuously differentiable finite elements on tetrahedral grids[J]. Applied Numer. Math., 2009, 59(1):219-233.[31] Zhang S. On the full C1-Qk finite element spaces on rectangles and cuboids[J]. Adv. Appl. Math. Mech., 2010, 2(6):701-721. |