[1] Chaves A S. A fractional diffusion equation to describe Lévy flights[J]. Phys. A, 1998, 239:13-16.[2] Gorenflo R, Mainardi F. Feller fractional diffusion and Lévy stable motions[C]. Conference on Lévy Processes:Theory and Applications, 18-22 January 1999.[3] Hanneken J W, Narahari Achar B N, Vaught D M, et al. A random walk simulation of fractional diffusion[J]. J. Mole. Liqu., 2004, 114(1-3):153-157.[4] Klafter J, Shlesinger M F, Zumofen G. Beyond Brownian motion[J]. Phys. Today, 1996, 49:33-39.[5] Molz F J, Fix G J, Lu S. A physics interpretation for fractional derivative in the Lévy diffusion[J]. Appl. Math. Lett., 2002,15(7):907-911.[6] EI-Nabulsi R A. Fractional description of super and subdiffusion[J]. Phys. A, 2005, 340(5-6):361-368.[7] Bagley R L, Calico R A. Fractional order state equations for the control of viscoelastic structures[J]. J. Guid. Contr. Dynam., 1991, 14:304-311.[8] Koeller R C. Application of fractional calculus to the theory of viscoelasticity[J]. J. Appl. Mech., 1984, 51(2):299-307.[9] Mainardi F. Fractional relaxation-oscillation and fractional diffusion-wave phenomena[J]. Chaos. Soliton. Fract., 1996, 7(9):1461-1477.[10] Podlubny I. Fractional Differential Equations[M]. Academic Press, 1998.[11] Kilbas A A, Srivastava H M, Trujillo J J. Theory and Application of Fractional Differential Equations[M]. Elsevier, Amsterdam, 2006.[12] 郭柏灵, 蒲学科, 黄凤辉. 分数阶偏微分方程及其数值解[M]. 北京:科学出版社, 2011.[13] 刘发旺, 庄平辉, 刘青霞. 分数阶偏微分方程数值方法及其应用[M]. 北京:科学出版社, 2015.[14] 孙志忠, 高广花. 分数阶微分方程的有限差分方法[M]. 北京:科学出版社, 2015.[15] Li C P, Zeng F H. Numerical Methods for Fractional Calculus[M]. CRC Press, 2015.[16] 林世敏, 许传炬. 分数阶微分方程的理论和数值方法研究[J]. 计算数学, 2016, 38:1-24.[17] Meerschaert M M, Tadjeran C. Finite difference approximations for fractional advection-dispersion flow equations[J]. J. Comput. Appl. Math., 2004, 172(1):65-77.[18] Meerschaert M M, Tadjeran C. Finite difference approximations for two-sided space-fractional partial differential equations[J]. Appl. Numer. Math., 2006, 56(1):80-90.[19] Ford N J, Kamal P, Yan Y. An algorithm for the numerical solution of two-sided space fractional partial differential equations[J]. Comput. Methods Appl. Math., 2015, 15:497-514.[20] Celik C, Duman M. Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative[J]. J. Comput. Phys., 2012, 231(4):1743-1750.[21] Liu F, Zhuang P, Burrage K. Numerical methods and analysis for a class of fractional advectiondispersion models[J]. Comput. Math. Appl., 2012, 64(10):2990-3007.[22] Zhang H M, Liu F. Numerical simulation of the Riesz fractional diffusion equation with a nonlinear source term[J]. J. Appl. Math. Inform., 2008, 26(1-2):1-14.[23] Yang Q, Liu F, Turner I. Numerical methods for fractional partial differential equations with Riesz space fractional derivatives[J]. Appl. Math. Model., 2010, 34(1):200-218.[24] Shen S, Liu F, Anh V, et al. A novel numerical approximation for the space fractional advectiondispersion equation[J]. IMA J. Appl. Math., 2014, 79(3):431-444.[25] Ding H F, Li C P, Chen Y Q. High-order algorithms for Riesz derivative and their applications(I)[J]. Abst. Appl. Anal., 2014, Article ID 653797, 17 pages.[26] Ding H F, Li C P, Chen Y Q. High-order algorithms for Riesz derivative and their applications(Ⅱ)[J]. J. Comput. phys., 2015, 293:218-237.[27] Ding H F, Li C P. High-order algorithms for Riesz derivative and their applications(Ⅲ)[J]. Fract. Calc. Appl. Anal., 2016, 19:19-55.[28] Zhao X, Sun Z Z, Hao Z P. A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrödinger equation[J]. SIAM J. Sci. Comput., 2014, 36:A2865-A2866.[29] Tian W Y, Zhou H, Deng W H. A class of second order difference approximation for solving space fractional diffusion equations[J]. Math. Comput., 2015, 84:1703-1727.[30] Zhou H, Tian W Y, Deng W H. Quasi-compact finite difference schemes for space fractional diffusion equations[J]. J. Sci. Comput., 2013, 56:45-66.[31] Chen M H, Deng W H. WSLD operators:A class of fourth order difference approximations for space Riemann-Liouville derivative[J]. Math., 2013, 16(2):516-540.[32] Hao Z P, Sun Z Z, Cao W R. A fourth-order approximation of fractional derivatives with its applications[J]. J. Comput. Phys., 2015, 281:787-805.[33] Diethelm K. An algorithm for the numerical solution of differential equations of fractional order[J]. Elect. Trans. Numer. Anal., 1997, 5:1-6.[34] Yan Y, Pal K, Ford N J. Higher order numerical methods for solving fractional differential equations[J]. BIT Numer. Math., 2014, 54:555-584.[35] Li Z Q, Yan Y, Ford N J. Error estimates of a high order numerical method for solving linear fractional differential equation[J]. Appl. Numer. Math., 2017, 114:201-220.[36] Li Z Q, Liang Z Q, Yan Y. High-order numerical methods for solving time fractional partial differential equations[J]. J. Sci. Comput., 2017, 71:785-803.[37] Diethelm K. The Analysis of Fractional Differential Equations[M]. New York:Springer, 2004.[38] Diethelm K. Generalized compound quadrature formulae finite-part integral[J]. IMA J. Numer. Anal., 1997, 17:479-493.[39] 张文生. 科学计算中的偏微分方程有限差分法[M]. 北京:高等教育出版社, 2006.[40] Ding H F, Li C P. High-order numerical algorithms for Riesz derivatives via construction new generating functions[J]. J. Sci. Comput., 2017, 71:759-784. |