[1] Bauschke H and Combettes P. Convex analysis and monotone operator theory in Hilbert spaces. Springer, New York, 2011.[2] Bredies K, Kunisch K and Pock T. Total Generalized Variation[J]. SIAM Journal on Imaging Scinces, 2010, 3(3):492-526.[3] Chambolle A and Pock T. A first-order primal-dual algorithm for convex problems with applications to imaging[J]. Journal of Mathematical Imaging and Vision, 2011, 40(1):120-145.[4] Chan T and Shen J. Iamge processing and analysis:variational, PDE, wavelet, and stochastic method. Society for Industrial and Applied Mathematics, Philadelphia, 2005.[5] Das S. Functional Fractional Calculus, Springer Berlin Heidelberg, 2011.[6] Eckstein J and Yao W. Understanding the convergence of the alternating direction method of multipliers:theoretical and computational perspectives[J]. Pacific Journal of Optimization, 2015, 11(4):619-644.[7] Gabay D and Mercier B. A dual algorithm for the solution of nonlinear variational problems via finite element approximation[J]. Computers and Mathematics with Applications, 1976, 2(1):17-40.[8] Li Q, Shen L, Xu Y and Zhang N. Multi-step fixed-point proximity algorithms for solving a class of optimization problems arisng from image processing[J]. Advances in Computational Mathematics, 2015, 41(2):387-422.[9] Linh L and Vese L. Image restoration and decomposition via bounded total variation and negative hilbert-sobolev space[J]. Applied Mathematics and Optimization, 2008, 58(2):167-193.[10] Lysaker M, Lundervold A and Tai X. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time[J]. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, 2003, 12(12):1579-1590.[11] Micchelli C, Shen L and Xu Y. Proximity algorithms for image models:denoising[J]. Inverse Problems, 2011, 27(4):45009-45038.[12] Osher S. Solé A. and Vese L., Image decomposition and restoration using total variation minimization and h-1 norm[J]. Multiscale Modeling and Simulation, 2003, 1(3):349-370.[13] Pu I. Matrix approach to discrete fractional calculus[J]. Fractional Calculus and Applied Analysis, 2000, 3(4):359-386.[14] Pu I, Chechkin A, Skovranek T and et al. Matrix approach to discrete fractional calculus ii:Partial fractional differential equations[J]. Journal of Computational Physics, 2008, 228(8):3137-3153.[15] Pu Y, Zhou J and Yuan X. Fractional differential mask:a fractional differential-based approach for multiscale texture enhancement[J]. IEEE Transactions on Image Processing, 2010, 19(2):491-511.[16] Rockafellar R. Monotone operators and the proximal point algorithm[J]. SIAM journal on Control and Optimization, 1976, 14(5):877-898.[17] Rudin L, Osher S and Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physica D, 1992, 60:259-268.[18] Zhang J and Chen K. A total fractional-order variation model for image restoration with nonhomogeneous boundary conditions and its numerical solution[J]. SIAM Journal on Imaging Sciences, 2015, 8(4):2487-2518.[19] Zhang J and Wei Z. A class of fractional-order multi-scale variational models and alternating projection algorithm for image denoising[J]. Applied Mathematical Modelling, 2011, 35(5):2516-2528.[20] Zhu M and Chan T. An efficient primal-dual hybrid gradient algorithm for total variation image restoration. CAM Report, UCLA, 2008, 08-34.[21] 田丹. 基于分数阶变分的图像去噪和分割算法研究[D]. 东北大学, 2015.[22] 杨柱中, 周激流, 晏祥玉等. 基于分数阶微分的图像增强[J]. 计算机辅助设计与图形学学报, 2008, 20(3):343-348. |