删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于分数阶微积分正则化的图像处理

本站小编 Free考研考试/2021-12-27

陈云1,2, 郭宝裕1,2, 马祥园1,2
1. 中山大学数学学院;
2. 中山大学广东省计算科学重点实验室, 广州 510275
收稿日期:2017-01-06出版日期:2017-12-15发布日期:2017-11-13




IMAGE PROCESSING BASED ON REGULARIZATION WITH FRACTIONAL CALCULUS

Chen Yun1,2, Guo Baoyu1,2, Ma Xiangyuan1,2
1. School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China;
2. Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou 510275, China
Received:2017-01-06Online:2017-12-15Published:2017-11-13







摘要



编辑推荐
-->


全变分正则化方法已被广泛地应用于图像处理,利用此方法可以较好地去除噪声,并保持图像的边缘特征,但得到的优化解会产生"阶梯"效应.为了克服这一缺点,本文通过分数阶微积分正则化方法,建立了一个新的图像处理模型.为了克服此模型中非光滑项对求解带来的困难,本文研究了基于不动点方程的迫近梯度算法.最后,本文利用提出的模型与算法进行了图像去噪、图像去模糊与图像超分辨率实验,实验结果表明分数阶微积分正则化方法能较好的保留图像纹理等细节信息.
MR(2010)主题分类:
65N21
74P99
74S30

分享此文:


()

[1] Bauschke H and Combettes P. Convex analysis and monotone operator theory in Hilbert spaces. Springer, New York, 2011.

[2] Bredies K, Kunisch K and Pock T. Total Generalized Variation[J]. SIAM Journal on Imaging Scinces, 2010, 3(3):492-526.

[3] Chambolle A and Pock T. A first-order primal-dual algorithm for convex problems with applications to imaging[J]. Journal of Mathematical Imaging and Vision, 2011, 40(1):120-145.

[4] Chan T and Shen J. Iamge processing and analysis:variational, PDE, wavelet, and stochastic method. Society for Industrial and Applied Mathematics, Philadelphia, 2005.

[5] Das S. Functional Fractional Calculus, Springer Berlin Heidelberg, 2011.

[6] Eckstein J and Yao W. Understanding the convergence of the alternating direction method of multipliers:theoretical and computational perspectives[J]. Pacific Journal of Optimization, 2015, 11(4):619-644.

[7] Gabay D and Mercier B. A dual algorithm for the solution of nonlinear variational problems via finite element approximation[J]. Computers and Mathematics with Applications, 1976, 2(1):17-40.

[8] Li Q, Shen L, Xu Y and Zhang N. Multi-step fixed-point proximity algorithms for solving a class of optimization problems arisng from image processing[J]. Advances in Computational Mathematics, 2015, 41(2):387-422.

[9] Linh L and Vese L. Image restoration and decomposition via bounded total variation and negative hilbert-sobolev space[J]. Applied Mathematics and Optimization, 2008, 58(2):167-193.

[10] Lysaker M, Lundervold A and Tai X. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time[J]. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, 2003, 12(12):1579-1590.

[11] Micchelli C, Shen L and Xu Y. Proximity algorithms for image models:denoising[J]. Inverse Problems, 2011, 27(4):45009-45038.

[12] Osher S. Solé A. and Vese L., Image decomposition and restoration using total variation minimization and h-1 norm[J]. Multiscale Modeling and Simulation, 2003, 1(3):349-370.

[13] Pu I. Matrix approach to discrete fractional calculus[J]. Fractional Calculus and Applied Analysis, 2000, 3(4):359-386.

[14] Pu I, Chechkin A, Skovranek T and et al. Matrix approach to discrete fractional calculus ii:Partial fractional differential equations[J]. Journal of Computational Physics, 2008, 228(8):3137-3153.

[15] Pu Y, Zhou J and Yuan X. Fractional differential mask:a fractional differential-based approach for multiscale texture enhancement[J]. IEEE Transactions on Image Processing, 2010, 19(2):491-511.

[16] Rockafellar R. Monotone operators and the proximal point algorithm[J]. SIAM journal on Control and Optimization, 1976, 14(5):877-898.

[17] Rudin L, Osher S and Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physica D, 1992, 60:259-268.

[18] Zhang J and Chen K. A total fractional-order variation model for image restoration with nonhomogeneous boundary conditions and its numerical solution[J]. SIAM Journal on Imaging Sciences, 2015, 8(4):2487-2518.

[19] Zhang J and Wei Z. A class of fractional-order multi-scale variational models and alternating projection algorithm for image denoising[J]. Applied Mathematical Modelling, 2011, 35(5):2516-2528.

[20] Zhu M and Chan T. An efficient primal-dual hybrid gradient algorithm for total variation image restoration. CAM Report, UCLA, 2008, 08-34.

[21] 田丹. 基于分数阶变分的图像去噪和分割算法研究[D]. 东北大学, 2015.

[22] 杨柱中, 周激流, 晏祥玉等. 基于分数阶微分的图像增强[J]. 计算机辅助设计与图形学学报, 2008, 20(3):343-348.

[1]刘子源, 梁家瑞, 钱旭, 宋松和. 带乘性噪声的空间分数阶随机非线性Schrödinger方程的广义多辛算法[J]. 计算数学, 2019, 41(4): 440-452.
[2]胡冬冬, 曹学年, 蒋慧灵. 带非线性源项的双侧空间分数阶扩散方程的隐式中点方法[J]. 计算数学, 2019, 41(3): 295-307.
[3]王同科, 樊梦. 第二类端点奇异Fredholm积分方程的分数阶退化核方法[J]. 计算数学, 2019, 41(1): 66-81.
[4]王志强, 文立平, 朱珍民. 时间延迟扩散-波动分数阶微分方程有限差分方法[J]. 计算数学, 2019, 41(1): 82-90.
[5]王芬玲, 樊明智, 赵艳敏, 史争光, 石东洋. 多项时间分数阶扩散方程各向异性线性三角元的高精度分析[J]. 计算数学, 2018, 40(3): 299-312.
[6]程强, 熊向团. 时间分数次扩散方程反演源项问题的迭代正则化方法[J]. 计算数学, 2017, 39(3): 295-308.
[7]杨水平. 一类分数阶多项延迟微分方程的Jacobi谱配置方法[J]. 计算数学, 2017, 39(1): 98-114.
[8]毛文亭, 王文强, 林伟贤. 一类带乘性噪声随机分数阶微分方程Euler方法的弱收敛性与弱稳定性[J]. 计算数学, 2016, 38(4): 442-452.
[9]樊梦, 王同科, 常慧宾. 非光滑函数的分数阶插值公式[J]. 计算数学, 2016, 38(2): 212-224.
[10]林世敏, 许传炬. 分数阶微分方程的理论和数值方法研究[J]. 计算数学, 2016, 38(1): 1-24.
[11]陈一鸣, 孙艳楠, 刘立卿, 柯小红. 基于拟Legendre多项式求解一类分数阶微分方程[J]. 计算数学, 2015, 37(1): 21-33.
[12]王同科, 佘海艳, 刘志方 . 分数阶光滑函数线性和二次插值公式余项估计[J]. 计算数学, 2014, 36(4): 393-406.
[13]王文强, 孙晓莉. 线性随机分数阶微分方程Euler方法的弱收敛性与弱稳定性[J]. 计算数学, 2014, 36(2): 195-204.
[14]贾现正, 张大利, 李功胜, 池光胜, 李慧玲. 空间-时间分数阶变系数对流扩散方程微分阶数的数值反演[J]. 计算数学, 2014, 36(2): 113-132.
[15]王倩, 戴华. 求解离散不适定问题的正则化GMERR方法[J]. 计算数学, 2013, 35(2): 195-204.

--> -->
阅读次数
全文







摘要





Cited

Shared






PDF全文下载地址:

http://www.computmath.com/jssx/CN/article/downloadArticleFile.do?attachType=PDF&id=232
相关话题/分数 计算 数学 图像 空间