[1] Samko S G,Kilbas A A,Marichev O I.Fractional Integrals and Derivatives:Theory and Applications[M].Gordon and Breach Science Publishers:Amsterdam,1993.[2] Miller K S,Ross B.An introdution to fractional calculus and fractional differential equations[M].John Wiley:New York,1993.[3] Scalas E,Gorenflo R,Mainardi F.Fractional calculus and continuous-time finance[J].Physica A,2000,284(1-4):376-384.[4] Benson D A,Wheatcraft S W,Meerchaert M M.Application of a fractional advection-dispersion equation[J].Water Resources Research, 2000,36(2):1403-1412.[5] Chechkin A V,Gorenflo R,Sokolov I M.Fractional diffusion in inhomogeneous media[J].Physica A,2005,38(42):679-684.[6] Kilbas A A,Srivastava H M,Trujillo J J.Theory and Applications of Fractional Differential Equations[M].Elsevier:Amsterdam,2006.[7] Bueno-Orovio A,Kay D,Grav V,et al.Fractional diffusion models of cardiac electrical propagation:role of structural heterogeneity in dispersion of repolarization[J].Journal of the Royal Society, Interface,2014,11(97):20140352.[8] Podlubny I.Fractional Differential Equations[M].Academic Press:San Diego,1999.[9] Li Z Y,Liu Y K,Yamamoto M.Initial-boundary value problems for multi-term time-fractional diffusion equations with positive constant coefficients[J].Applied Mathematics and Computation,2015,257(15):381-397.[10] Luchko Y.Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation[J].Journal of Mathematical Analysis and Applications,2011,374(2):538-548.[11] Mohammed A R,Luchko Y.Maximum principle for the multi-term time-fractional diffusion equations with the Riemann-Liouville fractional derivatives[J]. Applied Mathematics and Computation,2015,257(15):40-51.[12] Ming C Y,Liu F W,Zheng L C,Ian T,Vo A.Analytical solutions of multi-term time fractional differential equations and application to unsteady flows of generalized viscoelasticfluid[J].Computersand & Mathematics with Applications,2016,72(9):2084-2097.[13] Li G S,Chun L S,Jia X Z,Du D H.Numerical solution to the multi-term time fractional diffusion equation in a finite domain[J].Numerical Mathematics Theory Methods & Applications,2016,9(3):337-357.[14] Jin B T,Raytcho L,Liu Y K,Zhou Z.The Galerkin finite element method for a multi-term time-fractional diffusion equation[J].Journal of Computational Physics,2015,281:825-843.[15] Liu Y,Du Y W,Li H.Finite Difference/Finite Element Method for a Nonlinear Time-Fractional Fourth-Order Reaction Diffusion Problem[J]. Computers & Mathematics with Applications.2015,70(4):573-591.[16] Liu Y,Fang Z C,Li H.A mixed finite element method for a time-fractional fourth-order partial differential equation[J]. Applied Mathematics and Computation,2014,243(15):703-717.[17] 张铁.抛物型积分-微分方程有限元近似的超收敛性质[J].高等学校计算数学学报.2001,23(3):193-201.[18] Chen H T,Lin Q,Zhou J M,Wang H.Uniform error estimates for triangle finite element solutions of advection diffusion equations[J].Advance Computational Mathematics.2013,38(1):83-100.[19] Lin Q,Wang H,Zhang S H.Uniform optimal-order estimates for finite element methods foradvection-diffusion equations[J].Journal of Systems Science and Complexity,2009,22(4):555-559.[20] 林群,王宏,周俊明,张书华,陈宏焘.对流扩散方程三角形有限元解的一致估计[J].数学的实践与认识,2011,41(19):173-184.[21] 石东洋,梁慧.各向异性网格下线性三角形的超收敛分析[J].工程数学学报,2007,24(3):487-493.[22] 石东洋,王芬玲,赵艳敏.非线性sine-Gordon方程的各向异性线性元高精度分析新模式[J].计算数学,2014,36(3):245-256.[23] Shi D Y,Wang P L,Zhao Y M.Superconvergence analysis of anisotropic linear triangular finite element for nonlinear Schrödinger equation[J].Applied Mathematics Letters,2014,38(38):129-134.[24] Zhao Y M,Bu W P,Huang J F.Finite element method for two-dimensional space-fractional advection-dispersion equations[J]. Applied Mathematics and Computation,2015,257(15):553-565.[25] .Jiang Y J,Ma J T.High-order finite element methods for time-fractional partial differential equations[J]. Joural of Computation and Applied Mathematics,2011,235(11):3285-3290.[26] Bu W P,Liu X T,Tang Y F,Yang J Y.Finite element multigrid method for multi-term time fractional advection diffusion equations[J].Intemational Journal of Modeling Simulation, & Scientific Computing,2015, 6(1):1540001.[27] Bu W P,Xiao A G,Zeng W.Finite difference/finite element methods for distributed-order time fractional diffusion equations[J].Journal of Scientific Computing,2017,72(1):422-441.[28] 林群,严宁宁.高效有限元构造与分析[M].河北大学出版社:保定,1996.[29] 石东洋,梁慧.一个新的非常规Hermite型各向异性矩形元的超收敛分析及外推[J].计算数学,2005,27(4):369-382.[30] Chen S C,Shi D Y.Accuracy analysis for quasi-Wison element[J].Acta Mathematica Scientia,2000,20(1):44-48.[31] Chen S C,Shi D Y,Zhao Y C.Anisotropic interpolation and quasi-Wilson element for narrow quadrilateral meshes[J].IMA Journal of Numerical Analysis,2004,24(1):77-95.[32] Shi D Y,Wang F L,Zhao Y M.Superconvergence analysis and extrapolation of quasi-Wilson nonconforming finite element method for nonlinear Sobolev equations[J].Acta Mathematicae Applicatae Sinica,2013,29(2):403-414.[33] Shi D Y,Pei L F.Nonconforming quadrilateral finite element method for a class of nonlinear sine-Gordon equations[J]. Applied Mathematics and Computation,2013,219(17):9447-9460.[34] Knobloch P,Tobiska L.The P1rmmod element:a new nonconforming finite element for convection-diffusion problems[J]. SIAM Journal on Numerical Analysis,2003,41(2):436-456.[35] Shi D Y,Liang H.Superconvergence analysis Wilson element on anisotropic meshes[J].Applied Mathematics and Mechanics,2007, 28(1):119-125.[36] 石东洋,郝晓斌.Sobolev型方程各向异性Carey元的高精度分析[J]. 工程数学学报,2009,26(6):1021-1026. |