删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

水凝胶类软物质材料理论中的数学问题

本站小编 Free考研考试/2021-12-27

张辉
北京师范大学数学科学学院, 数学与复杂系统教育部重点实验室, 北京 100875
收稿日期:2017-02-16出版日期:2018-03-15发布日期:2018-02-03


基金资助:国家自然科学基金(11471046,11571045)和教育部中心高校基础研究基金.


MATHEMATICAL PROBLEMS IN SOFT MATTER LIKE HYDROGEL

Zhang Hui
School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China
Received:2017-02-16Online:2018-03-15Published:2018-02-03







摘要



编辑推荐
-->


水凝胶是一种具有广泛应用前景的软物质材料,一直是材料学家、物理化学家们关心的热点,目前有很多实验和专利产品.其机理和模型的研究处于初期阶段,本文综述该领域的部分进展,包括形变、微结构和宏观性质等的数学模型和相关计算方法,一并列出一些亟待解决的问题.
MR(2010)主题分类:
65M70

分享此文:


()

[1] Tanaka T, Fillmore D, Sun S T, et al., Phase transitions in ionic gels[J]. Phys. Rev. Let., 1980, 45(20):1636-1639.

[2] Li Y, Tanaka T. Kinetics of swelling and shrinking of gels[J]. J. Chem. Phys., 1990, 92:1365-1371.

[3] Wang C, Li Y, Hu Z. Swelling kinetics of polymer gels[J]. Macromolecules, 1997, 30(16):4727-4732.

[4] Doi M. Gel dynamics[J]. J. Phys. Soc. Japan, 2009, 78(5):052001.

[5] Doi M. Soft matter phyiscs[M]. Oxford Unversity Press, Oxford, 2013.

[6] Cai S, Suo Z. Mechanics and chemical thermodynamics of phase transition in temperature-sensitive hydrogels[J]. J. Mech. Phys. Solids, 2011, 59(11):2259-2278.

[7] Fredrickson G H. The equilibrium theory of inhomogeneous polymers[M]. Oxford University Press, 2006.

[8] Muratov C, E W. Theory of phase separation kinetics in polymer-liquid crystal systems[J]. J. Chem. Phys., 2002, 116:4723-4734.

[9] Rajabian M, Dubois C, Grmela M. Suspensions of semiflexible fibers in polymeric fluids:rheology and thermodynamics[J]. Rheol. Acta, 2005, 44:521-535.

[10] Eslami H, Grmela M, Bousmina M. A mesoscopic tube model of polymer/layered silicate nanocomposites[J]. Rheol. Acta, 2009, 48:317-331.

[11] Wu D, Zhou C, Hong Z, Mao D, Bian Z. Study on rheological behaviour of poly(butylene terephthalate)/montmorillonite nanocomposites[J]. Euro. Polymer J., 2005, 41:2199-2207.

[12] Zhao J, Morgan A B, Harris J D. Rheological characterization of polystyrene-clay nanocomposites to compare the degree of exfoliation and dispersion[J]. Polymer, 2005, 46:8641-8660.

[13] Li H. Smart Hydrogel Modeling[M]. Springer-Verlag, 2009.

[14] Hong W, Zhao X, Zhou J, Suo Z G. A theory of coupled diffusion and large deformation in polymeric gels[J]. J. Mech. Phys. Solids, 2008, 56:1779-1793.

[15] Huang T, Xu H G, Jiao K X, Zhu L P, Brown H R, Wang H L. A novel hydrogel with high mechanical strength:a macromolecular microsphere composite hydrogel[J]. Adv. Mater., 2007, 19:1622-1626.

[16] Leibler L. Theory of microphase separation in block copolymers[J]. Macromolecules, 1980, 13(1980):1602-1617.

[17] Zhai D, Zhang H. Investigation on the application of the TDGL equation in macromolecular microsphere composite hydrogel[J]. Soft Matter, 2013, 9:820-825.

[18] Zhang L, Chen L, Du Q. Diffuse-interface approach to predicting morphologies of critical nucleus and equilibrium structure for cubic to tetragonal transformations[J]. J. Comp. Phys., 2010, 229:6574-6584.

[19] Chen R, Yang X F, Zhang H. Decoupled energy stable schemes for phase-field vesicle membrane model[J]. J. Comp. Phys., 2015, 302:509-523.

[20] Ma L N, Chen R, Yang X F, Zhang H. Numerical approximations for Allen-Cahn type phase field model of two-phase incompressible fluids with moving contact lines[J]. Comm. Comp. Phys., 2017, 21:867-889.

[21] Wu D T, Zhang H. Numerical investigation of the growth kinetics for macromolecular microsphere composite hydrogel ased on the TDGL Equation[J]. J. Theor. Comput. Chem., 2016, 15:1650064.

[22] Chen R, Ji G H, Yang X F, Zhang H. Decoupled energy stable schemes for Phase Field Vesicle Membrane Model[J]. J. Comp. Phys., 2015, 302:509-523.

[23] Chen R, Yang X F, Zhang H. Decoupled energy stable scheme for hydrodynamic Allen-Cahn phase field moving contact line model[J]. J. Comput. Math., to appear.

[24] Yuan C H, Zhang H. Self-consistent mean field model of hydrogel and its numerical simulation[J]. J. Theor. Comput. Chem., 2013, 12(6):1350048.

[25] Yao X M and Zhang H. Kinetic model for the large deformation of cylindrical gels[J]. J. Theor. Comput. Chem., 2014, 13(4):1450032.

[26] Zhang H. Strain-stress relation in macromolecular microsphere composite hydrogel[J]. Appl. Math. Mech., 2016, 37(11):1539-1550.

[27] Cahn J W, Hilliard J E. Free energy of a non-uniform system:I, interfacial free energy[J]. J.Chem. Phys., 1958, 28(2):258-267.

[28] Cahn J W, Hilliard J E. Free energy of a non-uniform system:Ⅲ, nucleation in a two-component incompressibel fluid[J]. J. Chem. Phys., 1959, 31:688-699.

[29] Okada M, Masunaga H, Furukawa H. Concentric pattern formation during phase separation induced by a cross-linking reaction[J]. Macromolecules, 2000, 33:7238-7240.

[30] Nwabunma D, Chiu H W, Kyu T. Theoretical investigation on dynamics of photopolymerizationinduced phase separation and morphology development in nematic liquid crystal/polymer mixtures[J]. J. Chem. Phys., 2000, 113:6429.

[31] Kyu T, Nwabunma D, Chiu H W. Theoretical simulation of holographic polymer-dispersed liquidcrystal films via pattern photopolymerization-induced phase separation[J]. Phys. Rev. E, 2001, 2001, 63:061802.

[32] Bray A J. Theory of phase-ordering kinetics[J]. Adv. Phys., 1994, 43:357-459.

[33] Ibanes M, Garcia-Ojalvo J, Toral R, et al. Noise-induced phase separation:Mean-field results[J]. Phys. Rev. E, 1999, 60:3597-3605.

[34] Flory P J. Principles of Polymer Chemistry[M]. Cornell University Press, New York, 1953.

[35] de Gennes P G. Dynamics of fluctuations and spinodal decomposition in polymer blends[J]. J. Chem. Phys., 1980, 72:4756-4763.

[36] Fialkowski M, Holyst R. Dynamics of phase separation in polymer blends revisited:Morphology, spinodal, noise, and nucleation[J]. Macromol. Theory Simul., 2008, 17:263-273.

[37] Chakrabarti A, Toral R, Gunton J D, et al. Dynamics of phase separation in a binary polymer blend of critical composition[J]. J. Chem. Phys., 1990, 92:6899-6909.

[38] Rubinstein M, Colby R H. Polymer Physics[M]. Oxford:Oxford University Press, 2003.

[39] Dai S, Du Q. Computational studies of coarsening rates for Cahn-Hilliard equation with phasedependent diffusion mobility[J]. J. Comp. Phys., 2016, 310:85-108.

[40] Dai S, Du Q, Weak solutions for the Cahn-Hilliard equation with degenerate mobility[J]. Arch. Rational Mech. Anal., 2016, 219:1161-1184.

[41] Du Q, Feng W, Yu P, Hu S, Liu Z, Chen L. A fourier spectral moving mesh method for the Cahn-Hilliard equation with elasticity[J]. Comm. Comput. Phys., 2009, 5:582-599.

[42] Yang X, Feng J J, Liu C and Shen J. Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method[J]. J. Comp. Phys., 2006, 218:417-428.

[43] Yang X, Forest M G, Li H, Liu C, Shen J, Wang Q, Chen F. Modeling and simulations of drop pinch-off from liquid crystal filaments and the leaky liquid crystal faucet immersed in viscous fluids[J]. J. Comp. Phys., 2013, 236:1-14.

[44] Zhao J, Wang Q, Yang X. Numerical approximations to a new phase field model for immiscible mixtures of nematic liquid crystals and viscous fluids[J]. Comput. Meth. Appl. Mech. Eng., 2016, 310:77-97.

[45] Zhao J, Yang X, Li J and Wang Q. Energy stable numerical schemes for a hydrodynamic model of nematic liquid crystals[J]. SIAM. J. Sci. Comput., 2016, 38:A3264-A3290.

[46] Zhao J, Yang X, Shen J, Wang Q. A decoupled energy stable scheme for a hydrodynamic phasefield model of mixtures of nematic liquid crystals and viscous fluids[J]. J. Comp. Phys., 2016, 305:539-556.

[47] Chang K, Kril lⅡ C E, Du Q, Chen L. Evaluating microstructural parameters of three-dimensional grains generated by phase-filed simulation or other votex-based techniques[J]. Model. Simul. Materials Sci. Eng., 2012, 20:075009.

[48] Du Q, Chen L Q, Zhang L. mathematical and numericla aspects of phase-field approach to critical nuclei morphology in solid[J]. J. Sci. Comput., 2008, 37:890102.

[49] Shen J, Yang X. An efficient moving mesh spectral method for the phase-field model of two-phase flows[J]. J Comp. Phys., 2009, 228:2978-2992.

[50] Shen J, Yang X. Energy stable schemes for Cahn-Hilliard phase-field model of two-phase incompressible flows[J]. Chin. Ann. Math. Ser. B, 2010, 31:743-758.

[51] Shen J, Yang X. Numerical approximations of Allen-Cahn and Cahn-Hilliard equations[J]. Disc. Conti. Dyn. Sys. -A, 2010, 28:1669-1691.

[52] Shen J and Yang X. A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities[J]. SIAM J. Sci. Comput., 2010, 32:1159-1179.

[53] Shen J and Yang X. Decoupled energy stable schemes for phase filed models of two phase complex fluids[J]. SIAM J. Sci. Comput., 2014, 36:N122-B145.

[54] Shen J and Yang X. Decoupled, energy stable schemes for phase-field models of two-phase incompressible flows[J]. SIAM J. Num. Anal., 2015, 53:279-296.

[55] Shen J, Yang X, Wang Q. On mass conservation in phase field models for binary fluids[J]. Comm. Compt. Phys, 2012, 13:1045-1065.

[56] Shen J, Yang X, Yu H. Efficient energy stable numerical schemes for a phase field moving contact line model[J]. J. Comp. Phys., 2015, 284:617-630.

[57] Yang X. Error analysis of stabilized semi-implicit method of Allen-Cahn equation[J] Disc. Conti. Dyn. Sys.-B, 2009, 11:1057-1070.

[58] Yang X. Linear, first and second order and unconditionally energy stable numerical schemes for the phase field model of homopolymer blends[J]. J. Comp. Phys., 2016, 302:509-523.

[59] Yang X, Han D. Linearly first-and second-order, unconditionally energy stable schemes for the phase field crystal equation[J]. J. Comp. Phys., 2017, 330:1116-1134.

[60] Yang X, Ju L L. Efficient linear schemes with unconditionally energy stability for the phase field elastic bending energy model[J]. Comput. Meth. Appl. Mech. Engrg., 2017, 315:691-712.

[61] Han D Z, Wang X M, Wu H. Existence and uniqueness of global weak solutions to a Cahe-HilliardStokes-Darcy system for two phase incompressible flows in karstic geometry[J]. J. Diff. Eqns, 2014, 257:3887-3933.

[62] Chen W B, Wang C, Wang X M, Wise S. A linear iteration algorithm for a second-order energy stable scheme for a thin film model without slope selection[J]. J. Sci. Comp., 2014, 59:574-601.

[63] Chen W B, Conde S, Wang C, Wang X M, Wise S. A linear energy stable nemerical scheme for a epitaxial thin film growth model without slope selection[J]. J. Sci. Comp., 2012, 52:546-562.

[64] Qiao Z H, Tang T and Xie H H. Error analysis of a mixed finite element method for the molecular bean epitaxy model[J]. SIAM J. Numer. Anal., 2015, 53:184-205.

[65] Li X, Qiao Z H and Zhang H. A second-order convex-splitting scheme for the Cahn-Hilliard equation with variable interfacial parameters[J]. J. Comput. Math., 2017, 35:693-710.

[66] Li X, Qiao Z H, Zhang H. An unconditionally energy stable finite difference scheme for a stochastic Cahn-Hilliard equation[J]. Sci. China Math., 2016, 59:1815-1834.

[67] E W, Ren W Q and Vanden-Eijnden E. String method for the study of rare events[J]. Phys. Rev. B, 2002, 66:052301.

[68] Zhang W, Li T J and Zhang P W. Numerical study for the nucleation of one-dimensional stochastic Cahn-Hilliard dynamics[J]. Commun. Math. Sci, 2012, 10:1105-1132.

[69] Li X, Ji G H, Zhang H. Phase transitions of macromolecular microsphere composite hydrogels based on the stochastic Cahn-Hilliard equation[J]. J. Comp. Phys., 2015, 283:81-97.

[70] Saad Y, Schultz M H. GMRES:A generalized minimal residual algorithm for solving nonsymmetric linear systems[J]. SIAM J. Sci. Stat. Comput., 1986, 7:856-869.

[71] Nocedal J, Wright S J. Numerical Optimization[M]. New York:Springer-Verlag, 1999.

[72] Shen J, Wang C, Wang X M, et al. Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy:application to thin film epitaxy[J]. SIAM J. Numer. Anal., 2012, 50:105-125.

[73] Xu Z, Zhang H. Stabilitized semi-implicit numerical scheme for the Cahn-Hilliard with variable interfacial parameters[J]. J. Comput. Appl. Math., 2018, to appear.

[74] Jiang K, Wang C, Huang Y Q, Zhang P W. Discovery of new metastable patterns in diblock copolymers[J]. Comm. Comput. Phys., 2013, 14(2):443-460.

[75] Xu W Q, Jiang K, Zhang P W, Shi A C. A strategy to explore stable and metastable ordered phases of block copolymers[J]. J. Phys. Chem. B, 2013, 117:5296-5305.

[76] Helfand E. Block copolymer theory. Ⅲ. Statistical mechanics of the microdomain structure[J]. Macromolecules, 1975, 8(4):552-556.

[77] Helfand E, Wasserman Z R. Block copolymer theory:4. Narrow interphase approximation[J]. Macromolecules, 1976, 9(6):879-888.

[78] Ackerman D M, Delaney K, Fredrickson G H, Ganapathysubramanian B. A finite element approach to self-consistent field theory calculations of multiblock polymers[J]. J. Comp. Phys., 2017, 331:280-296.

[79] Matsen M W, Schick M. Stable and unstable phases of a diblock copolymer melt[J]. Phys. Rev. Let., 1994, 72(16):2660-663.

[80] Cochran E W, Garcia-Cervera C J, Fredrickson G H. Stability of the gyroid phase in diblock copolymers at strong segregation[J]. Macromolecules, 2006, 39(7):2449-2451.

[81] Jiang K, Xu W Q, Zhang P W. Analytic structure of the SCFT energy functional of multicomponent block copolymers[J]. Comm. Comp. Phys., 2015, 17(05):1360-1387.

[82] Jiang K, Zhang J, Liang Q. Self-assembly of asymmetrically interacting ABC star triblock copolymer melts[J]. J. Phys. Chem. B, 2015, 119:14551-14562.

[83] Drolet F, Fredrickson G H. Combinatorial screening of complex block copolymer assembly with self-consistent field theory[J]. Phys. Rev. Let., 1999, 83(21):4317-4320.

[84] Rasmussen K, Kalosakas G. Improved numerical algorithm for exploring block copolymer mesophases[J]. J. Polymer Science Part B:Polymer Phys., 2002, 40(16):1777-1783.

[85] Tzeremes G, Rasmussen K, Lookman T, et al. Efficient computation of the structural phase behavior of block copolymers[J]. Phys. Rev. E, 2002, 65(4):33.

[86] Weiss G H, Maradudin A A. The Baker-Hausdorff formula and a problem in crystal physics[J]. J. Math. Phys., 1962, 3:771.

[87] Sides S W, Fredrickson G H. Parallel algorithm for numerical self-consistent field theory simulations of block copolymer structure[J]. Polymer, 2003, 44(19):5859-866.

[88] He C C, Jiao K X, Zhang X, et al. Nanoparticles, microgels and bulk hydrogels with very high mechanical strength starting from micelles[J]. Soft Matter, 2011, 7:2943-2952.

[89] Cai S Q, Lou Y C, Partha G, Agathe R, Suo Z G. Force generated by a swelling elastomer subject to constraint[J]. J. Mech. Phys. Solids 2010, 107:103-535.

[90] Flory P J, Rehner J. Statistical mechanics of cross-linked polymer networks swelling[J]. J. Chem. Phys., 1943, 11:521-526.

[1]周婷, 向新民. 无界域上半线性强阻尼波动方程的全离散有理谱逼近[J]. 计算数学, 2009, 31(4): 335-348.

--> -->
阅读次数
全文







摘要





Cited

Shared






PDF全文下载地址:

http://www.computmath.com/jssx/CN/article/downloadArticleFile.do?attachType=PDF&id=62
相关话题/数学 材料 北京师范大学 实验 科学学院

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 石墨烯基复合材料去除和检测重金属离子的研究进展
    中文关键词:石墨烯复合材料重金属离子去除检测英文关键词:Graphene,Composites,Heavymetalions,Removal,Detection基金项目:重庆市高校创新团队(KJTD201309)、重庆市国际科技合作基地建设项目(cstc2014gjhz20002)作者单位E-mai ...
    本站小编 Free考研考试 2021-12-27
  • 二维等谱问题研究的计算数学框架
    孙家昶,张娅中国科学院软件研究所并行软件与计算科学实验室,北京100190收稿日期:2017-03-15出版日期:2017-08-15发布日期:2017-08-04基金资助:国家重点研发计划高性能计算重点专项(2016YFB0200601)、国家自然科学基金(91530323,91230109)、国 ...
    本站小编 Free考研考试 2021-12-27
  • 拉曼光谱表征石墨烯材料的研究进展
    中文关键词:石墨烯,基底,掺杂英文关键词:graphene,substrate,doping基金项目:北京市科技计划项目(No.Z151100003515003)作者单位E-mail李坤威中国标准化研究院刘晶冰北京工业大学liujingbing@bjut.edu.cn郝欢欢北京工业大学汪浩北京工业大 ...
    本站小编 Free考研考试 2021-12-27
  • 废水生物脱氮工艺中N2O排放数学模型研究进展
    中文关键词:生物脱氮N2O排放数学模型英文关键词:Bologicalnitrogenremoval,Nitrousoxideemission,Mathematicalmodel基金项目:国家自然科学基金项目(51508073)作者单位E-mail郭静波东北电力大学建筑工程学院吉林市guojingbo ...
    本站小编 Free考研考试 2021-12-27
  • 芴基有机蓝光材料的研究进展
    中文关键词:芴有机发光二极管英文关键词:FluoreneOrganiclight-emittingdiode基金项目:作者单位E-mail王珊北京理工大学化工与环境学院jchj@iccas.ac.cn史鲁斌北京理工大学化工与环境学院景朝俊北京理工大学化工与环境学院jingcj@bit.edu.cn摘 ...
    本站小编 Free考研考试 2021-12-27
  • 基于DNA分子的纳米功能材料的设计、组装及应用
    中文关键词:DNA无机纳米材料疾病诊断治疗英文关键词:DNA,Inorganicnanomaterials,Disease,Diagnosis,Therapy基金项目:国家自然科学基金项目(51272186,21422105,21675120)作者单位E-mail郑雨武汉大学化学与分子科学学院湖北武 ...
    本站小编 Free考研考试 2021-12-27
  • 一类带有铁磁材料参数的非线性涡流问题的A-φ有限元法
    王艳芳1,2,王然3,康彤31.河南理工大学数学与信息科学学院,河南焦作454000;2.中国传媒大学理工学部,北京100024;3.中国传媒大学理工学部,北京100024收稿日期:2015-04-15出版日期:2016-04-15发布日期:2016-05-13通讯作者:康彤,E-mail:kang ...
    本站小编 Free考研考试 2021-12-27
  • 非酶葡萄糖传感器电极材料构建策略
    中文关键词:非酶葡萄糖检测金属有机框架碳纳米材料导电聚合物传感器英文关键词:nonenzymaticglucosedetection,carbonnanomaterials,conductivepolymers,sensors基金项目:作者单位E-mail王霜南京理工大学南京大学173686178@ ...
    本站小编 Free考研考试 2021-12-27
  • 金属改性硅基介孔材料及其加氢脱硫研究进展
    中文关键词:金属改性硅基介孔材料加氢脱硫英文关键词:metalmodification,mesoporousmolecularsieves,hydrodesulfurization基金项目:作者单位E-mail李美元辽宁石油化工大学石油化工学院18242351773@163.com白金辽宁石油化工大 ...
    本站小编 Free考研考试 2021-12-27
  • CuO/GNS复合材料的制备及其电化学性能
    中文关键词:氧化铜石墨烯复合材料超级电容器电化学性能英文关键词:CuOgraphenecompositessupercapacitorelectrochemicalperforman基金项目:河西学院科研创新与应用校长基金(XZ2014-24)作者单位E-mail金小青河西学院化学化工学院ygrcf ...
    本站小编 Free考研考试 2021-12-27