[1] Tanaka T, Fillmore D, Sun S T, et al., Phase transitions in ionic gels[J]. Phys. Rev. Let., 1980, 45(20):1636-1639.[2] Li Y, Tanaka T. Kinetics of swelling and shrinking of gels[J]. J. Chem. Phys., 1990, 92:1365-1371.[3] Wang C, Li Y, Hu Z. Swelling kinetics of polymer gels[J]. Macromolecules, 1997, 30(16):4727-4732.[4] Doi M. Gel dynamics[J]. J. Phys. Soc. Japan, 2009, 78(5):052001.[5] Doi M. Soft matter phyiscs[M]. Oxford Unversity Press, Oxford, 2013.[6] Cai S, Suo Z. Mechanics and chemical thermodynamics of phase transition in temperature-sensitive hydrogels[J]. J. Mech. Phys. Solids, 2011, 59(11):2259-2278.[7] Fredrickson G H. The equilibrium theory of inhomogeneous polymers[M]. Oxford University Press, 2006.[8] Muratov C, E W. Theory of phase separation kinetics in polymer-liquid crystal systems[J]. J. Chem. Phys., 2002, 116:4723-4734.[9] Rajabian M, Dubois C, Grmela M. Suspensions of semiflexible fibers in polymeric fluids:rheology and thermodynamics[J]. Rheol. Acta, 2005, 44:521-535.[10] Eslami H, Grmela M, Bousmina M. A mesoscopic tube model of polymer/layered silicate nanocomposites[J]. Rheol. Acta, 2009, 48:317-331.[11] Wu D, Zhou C, Hong Z, Mao D, Bian Z. Study on rheological behaviour of poly(butylene terephthalate)/montmorillonite nanocomposites[J]. Euro. Polymer J., 2005, 41:2199-2207.[12] Zhao J, Morgan A B, Harris J D. Rheological characterization of polystyrene-clay nanocomposites to compare the degree of exfoliation and dispersion[J]. Polymer, 2005, 46:8641-8660.[13] Li H. Smart Hydrogel Modeling[M]. Springer-Verlag, 2009.[14] Hong W, Zhao X, Zhou J, Suo Z G. A theory of coupled diffusion and large deformation in polymeric gels[J]. J. Mech. Phys. Solids, 2008, 56:1779-1793.[15] Huang T, Xu H G, Jiao K X, Zhu L P, Brown H R, Wang H L. A novel hydrogel with high mechanical strength:a macromolecular microsphere composite hydrogel[J]. Adv. Mater., 2007, 19:1622-1626.[16] Leibler L. Theory of microphase separation in block copolymers[J]. Macromolecules, 1980, 13(1980):1602-1617.[17] Zhai D, Zhang H. Investigation on the application of the TDGL equation in macromolecular microsphere composite hydrogel[J]. Soft Matter, 2013, 9:820-825.[18] Zhang L, Chen L, Du Q. Diffuse-interface approach to predicting morphologies of critical nucleus and equilibrium structure for cubic to tetragonal transformations[J]. J. Comp. Phys., 2010, 229:6574-6584.[19] Chen R, Yang X F, Zhang H. Decoupled energy stable schemes for phase-field vesicle membrane model[J]. J. Comp. Phys., 2015, 302:509-523.[20] Ma L N, Chen R, Yang X F, Zhang H. Numerical approximations for Allen-Cahn type phase field model of two-phase incompressible fluids with moving contact lines[J]. Comm. Comp. Phys., 2017, 21:867-889.[21] Wu D T, Zhang H. Numerical investigation of the growth kinetics for macromolecular microsphere composite hydrogel ased on the TDGL Equation[J]. J. Theor. Comput. Chem., 2016, 15:1650064.[22] Chen R, Ji G H, Yang X F, Zhang H. Decoupled energy stable schemes for Phase Field Vesicle Membrane Model[J]. J. Comp. Phys., 2015, 302:509-523.[23] Chen R, Yang X F, Zhang H. Decoupled energy stable scheme for hydrodynamic Allen-Cahn phase field moving contact line model[J]. J. Comput. Math., to appear.[24] Yuan C H, Zhang H. Self-consistent mean field model of hydrogel and its numerical simulation[J]. J. Theor. Comput. Chem., 2013, 12(6):1350048.[25] Yao X M and Zhang H. Kinetic model for the large deformation of cylindrical gels[J]. J. Theor. Comput. Chem., 2014, 13(4):1450032.[26] Zhang H. Strain-stress relation in macromolecular microsphere composite hydrogel[J]. Appl. Math. Mech., 2016, 37(11):1539-1550.[27] Cahn J W, Hilliard J E. Free energy of a non-uniform system:I, interfacial free energy[J]. J.Chem. Phys., 1958, 28(2):258-267.[28] Cahn J W, Hilliard J E. Free energy of a non-uniform system:Ⅲ, nucleation in a two-component incompressibel fluid[J]. J. Chem. Phys., 1959, 31:688-699.[29] Okada M, Masunaga H, Furukawa H. Concentric pattern formation during phase separation induced by a cross-linking reaction[J]. Macromolecules, 2000, 33:7238-7240.[30] Nwabunma D, Chiu H W, Kyu T. Theoretical investigation on dynamics of photopolymerizationinduced phase separation and morphology development in nematic liquid crystal/polymer mixtures[J]. J. Chem. Phys., 2000, 113:6429.[31] Kyu T, Nwabunma D, Chiu H W. Theoretical simulation of holographic polymer-dispersed liquidcrystal films via pattern photopolymerization-induced phase separation[J]. Phys. Rev. E, 2001, 2001, 63:061802.[32] Bray A J. Theory of phase-ordering kinetics[J]. Adv. Phys., 1994, 43:357-459.[33] Ibanes M, Garcia-Ojalvo J, Toral R, et al. Noise-induced phase separation:Mean-field results[J]. Phys. Rev. E, 1999, 60:3597-3605.[34] Flory P J. Principles of Polymer Chemistry[M]. Cornell University Press, New York, 1953.[35] de Gennes P G. Dynamics of fluctuations and spinodal decomposition in polymer blends[J]. J. Chem. Phys., 1980, 72:4756-4763.[36] Fialkowski M, Holyst R. Dynamics of phase separation in polymer blends revisited:Morphology, spinodal, noise, and nucleation[J]. Macromol. Theory Simul., 2008, 17:263-273.[37] Chakrabarti A, Toral R, Gunton J D, et al. Dynamics of phase separation in a binary polymer blend of critical composition[J]. J. Chem. Phys., 1990, 92:6899-6909.[38] Rubinstein M, Colby R H. Polymer Physics[M]. Oxford:Oxford University Press, 2003.[39] Dai S, Du Q. Computational studies of coarsening rates for Cahn-Hilliard equation with phasedependent diffusion mobility[J]. J. Comp. Phys., 2016, 310:85-108.[40] Dai S, Du Q, Weak solutions for the Cahn-Hilliard equation with degenerate mobility[J]. Arch. Rational Mech. Anal., 2016, 219:1161-1184.[41] Du Q, Feng W, Yu P, Hu S, Liu Z, Chen L. A fourier spectral moving mesh method for the Cahn-Hilliard equation with elasticity[J]. Comm. Comput. Phys., 2009, 5:582-599.[42] Yang X, Feng J J, Liu C and Shen J. Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method[J]. J. Comp. Phys., 2006, 218:417-428.[43] Yang X, Forest M G, Li H, Liu C, Shen J, Wang Q, Chen F. Modeling and simulations of drop pinch-off from liquid crystal filaments and the leaky liquid crystal faucet immersed in viscous fluids[J]. J. Comp. Phys., 2013, 236:1-14.[44] Zhao J, Wang Q, Yang X. Numerical approximations to a new phase field model for immiscible mixtures of nematic liquid crystals and viscous fluids[J]. Comput. Meth. Appl. Mech. Eng., 2016, 310:77-97.[45] Zhao J, Yang X, Li J and Wang Q. Energy stable numerical schemes for a hydrodynamic model of nematic liquid crystals[J]. SIAM. J. Sci. Comput., 2016, 38:A3264-A3290.[46] Zhao J, Yang X, Shen J, Wang Q. A decoupled energy stable scheme for a hydrodynamic phasefield model of mixtures of nematic liquid crystals and viscous fluids[J]. J. Comp. Phys., 2016, 305:539-556.[47] Chang K, Kril lⅡ C E, Du Q, Chen L. Evaluating microstructural parameters of three-dimensional grains generated by phase-filed simulation or other votex-based techniques[J]. Model. Simul. Materials Sci. Eng., 2012, 20:075009.[48] Du Q, Chen L Q, Zhang L. mathematical and numericla aspects of phase-field approach to critical nuclei morphology in solid[J]. J. Sci. Comput., 2008, 37:890102.[49] Shen J, Yang X. An efficient moving mesh spectral method for the phase-field model of two-phase flows[J]. J Comp. Phys., 2009, 228:2978-2992.[50] Shen J, Yang X. Energy stable schemes for Cahn-Hilliard phase-field model of two-phase incompressible flows[J]. Chin. Ann. Math. Ser. B, 2010, 31:743-758.[51] Shen J, Yang X. Numerical approximations of Allen-Cahn and Cahn-Hilliard equations[J]. Disc. Conti. Dyn. Sys. -A, 2010, 28:1669-1691.[52] Shen J and Yang X. A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities[J]. SIAM J. Sci. Comput., 2010, 32:1159-1179.[53] Shen J and Yang X. Decoupled energy stable schemes for phase filed models of two phase complex fluids[J]. SIAM J. Sci. Comput., 2014, 36:N122-B145.[54] Shen J and Yang X. Decoupled, energy stable schemes for phase-field models of two-phase incompressible flows[J]. SIAM J. Num. Anal., 2015, 53:279-296.[55] Shen J, Yang X, Wang Q. On mass conservation in phase field models for binary fluids[J]. Comm. Compt. Phys, 2012, 13:1045-1065.[56] Shen J, Yang X, Yu H. Efficient energy stable numerical schemes for a phase field moving contact line model[J]. J. Comp. Phys., 2015, 284:617-630.[57] Yang X. Error analysis of stabilized semi-implicit method of Allen-Cahn equation[J] Disc. Conti. Dyn. Sys.-B, 2009, 11:1057-1070.[58] Yang X. Linear, first and second order and unconditionally energy stable numerical schemes for the phase field model of homopolymer blends[J]. J. Comp. Phys., 2016, 302:509-523.[59] Yang X, Han D. Linearly first-and second-order, unconditionally energy stable schemes for the phase field crystal equation[J]. J. Comp. Phys., 2017, 330:1116-1134.[60] Yang X, Ju L L. Efficient linear schemes with unconditionally energy stability for the phase field elastic bending energy model[J]. Comput. Meth. Appl. Mech. Engrg., 2017, 315:691-712.[61] Han D Z, Wang X M, Wu H. Existence and uniqueness of global weak solutions to a Cahe-HilliardStokes-Darcy system for two phase incompressible flows in karstic geometry[J]. J. Diff. Eqns, 2014, 257:3887-3933.[62] Chen W B, Wang C, Wang X M, Wise S. A linear iteration algorithm for a second-order energy stable scheme for a thin film model without slope selection[J]. J. Sci. Comp., 2014, 59:574-601.[63] Chen W B, Conde S, Wang C, Wang X M, Wise S. A linear energy stable nemerical scheme for a epitaxial thin film growth model without slope selection[J]. J. Sci. Comp., 2012, 52:546-562.[64] Qiao Z H, Tang T and Xie H H. Error analysis of a mixed finite element method for the molecular bean epitaxy model[J]. SIAM J. Numer. Anal., 2015, 53:184-205.[65] Li X, Qiao Z H and Zhang H. A second-order convex-splitting scheme for the Cahn-Hilliard equation with variable interfacial parameters[J]. J. Comput. Math., 2017, 35:693-710.[66] Li X, Qiao Z H, Zhang H. An unconditionally energy stable finite difference scheme for a stochastic Cahn-Hilliard equation[J]. Sci. China Math., 2016, 59:1815-1834.[67] E W, Ren W Q and Vanden-Eijnden E. String method for the study of rare events[J]. Phys. Rev. B, 2002, 66:052301.[68] Zhang W, Li T J and Zhang P W. Numerical study for the nucleation of one-dimensional stochastic Cahn-Hilliard dynamics[J]. Commun. Math. Sci, 2012, 10:1105-1132.[69] Li X, Ji G H, Zhang H. Phase transitions of macromolecular microsphere composite hydrogels based on the stochastic Cahn-Hilliard equation[J]. J. Comp. Phys., 2015, 283:81-97.[70] Saad Y, Schultz M H. GMRES:A generalized minimal residual algorithm for solving nonsymmetric linear systems[J]. SIAM J. Sci. Stat. Comput., 1986, 7:856-869.[71] Nocedal J, Wright S J. Numerical Optimization[M]. New York:Springer-Verlag, 1999.[72] Shen J, Wang C, Wang X M, et al. Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy:application to thin film epitaxy[J]. SIAM J. Numer. Anal., 2012, 50:105-125.[73] Xu Z, Zhang H. Stabilitized semi-implicit numerical scheme for the Cahn-Hilliard with variable interfacial parameters[J]. J. Comput. Appl. Math., 2018, to appear.[74] Jiang K, Wang C, Huang Y Q, Zhang P W. Discovery of new metastable patterns in diblock copolymers[J]. Comm. Comput. Phys., 2013, 14(2):443-460.[75] Xu W Q, Jiang K, Zhang P W, Shi A C. A strategy to explore stable and metastable ordered phases of block copolymers[J]. J. Phys. Chem. B, 2013, 117:5296-5305.[76] Helfand E. Block copolymer theory. Ⅲ. Statistical mechanics of the microdomain structure[J]. Macromolecules, 1975, 8(4):552-556.[77] Helfand E, Wasserman Z R. Block copolymer theory:4. Narrow interphase approximation[J]. Macromolecules, 1976, 9(6):879-888.[78] Ackerman D M, Delaney K, Fredrickson G H, Ganapathysubramanian B. A finite element approach to self-consistent field theory calculations of multiblock polymers[J]. J. Comp. Phys., 2017, 331:280-296.[79] Matsen M W, Schick M. Stable and unstable phases of a diblock copolymer melt[J]. Phys. Rev. Let., 1994, 72(16):2660-663.[80] Cochran E W, Garcia-Cervera C J, Fredrickson G H. Stability of the gyroid phase in diblock copolymers at strong segregation[J]. Macromolecules, 2006, 39(7):2449-2451.[81] Jiang K, Xu W Q, Zhang P W. Analytic structure of the SCFT energy functional of multicomponent block copolymers[J]. Comm. Comp. Phys., 2015, 17(05):1360-1387.[82] Jiang K, Zhang J, Liang Q. Self-assembly of asymmetrically interacting ABC star triblock copolymer melts[J]. J. Phys. Chem. B, 2015, 119:14551-14562.[83] Drolet F, Fredrickson G H. Combinatorial screening of complex block copolymer assembly with self-consistent field theory[J]. Phys. Rev. Let., 1999, 83(21):4317-4320.[84] Rasmussen K, Kalosakas G. Improved numerical algorithm for exploring block copolymer mesophases[J]. J. Polymer Science Part B:Polymer Phys., 2002, 40(16):1777-1783.[85] Tzeremes G, Rasmussen K, Lookman T, et al. Efficient computation of the structural phase behavior of block copolymers[J]. Phys. Rev. E, 2002, 65(4):33.[86] Weiss G H, Maradudin A A. The Baker-Hausdorff formula and a problem in crystal physics[J]. J. Math. Phys., 1962, 3:771.[87] Sides S W, Fredrickson G H. Parallel algorithm for numerical self-consistent field theory simulations of block copolymer structure[J]. Polymer, 2003, 44(19):5859-866.[88] He C C, Jiao K X, Zhang X, et al. Nanoparticles, microgels and bulk hydrogels with very high mechanical strength starting from micelles[J]. Soft Matter, 2011, 7:2943-2952.[89] Cai S Q, Lou Y C, Partha G, Agathe R, Suo Z G. Force generated by a swelling elastomer subject to constraint[J]. J. Mech. Phys. Solids 2010, 107:103-535.[90] Flory P J, Rehner J. Statistical mechanics of cross-linked polymer networks swelling[J]. J. Chem. Phys., 1943, 11:521-526. |