删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

一类带有铁磁材料参数的非线性涡流问题的A-φ有限元法

本站小编 Free考研考试/2021-12-27

王艳芳1,2, 王然3, 康彤3
1. 河南理工大学数学与信息科学学院, 河南焦作 454000;
2. 中国传媒大学理工学部, 北京 100024;
3. 中国传媒大学理工学部, 北京 100024
收稿日期:2015-04-15出版日期:2016-04-15发布日期:2016-05-13
通讯作者:康彤,E-mail:kangtong@cuc.edu.cn.

基金资助:国家自然科学基金(批准号11571352)资助.


A-φ FINITE ELEMENT METHOD FOR A NONLINEAR EDDY CURRENT PROBLEM WITH FERROMAGNETIC MATERIALS

Wang Yanfang1,2, Wang Ran3, Kang Tong3
1. School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo 454000, Henan, China;
2. College of Sciences and Engineering, School of Sciences, Communication University of China, Beijing 100024, China;
3. College of Sciences and Engineering, School of Sciences, Communication University of China, Beijing 100024, China
Received:2015-04-15Online:2016-04-15Published:2016-05-13







摘要



编辑推荐
-->


针对带有铁磁材料的非线性涡流问题,其非线性性通常体现在磁场强度和磁感应强度的关系上.本文提出了一种全离散的有限元A-φ格式,分别在时间和空间上采用向后欧拉公式以及节点有限元进行离散.首先,在合适的函数空间里给出时间上的半离散格式,通过考察其弱形式建立相应的适定性理论,并证明近似解收敛于弱解.其次,给出全离散格式并讨论其误差估计.最后,给出两个数值算例以验证理论结果.
MR(2010)主题分类:
65N15
65C30

分享此文:
φ有限元法”的文章,特向您推荐。请打开下面的网址:http://www.computmath.com/jssx/CN/abstract/abstract155.shtml' name="neirong">φ有限元法'>

()

[1] Ciarlet P, Jr, Wu H, Zou J.Edge element methods for Maxwell's equations with strong convergence for Gauss' laws[J]. SIAM J. Numer. Anal., 2014, 52:779-807.

[2] Ciarlet P, Zou J.Fully discrete finite element approaches for time-dependent Maxwell's equa-tions[J]. Numerische Mathematik, 1999, 82:193-219.

[3] Duan H Y, Li S, Roger C E Tan, Zheng W Y. A delta-regularization finite element method for a double curl problem with divergence-free constraint[J]. SIAM J. Numer. Anal., 2012, 50:3208-3230.

[4] Duan H Y, Lin P, Roger C E Tan. Analysis of a continuous finite element method for H(curl,div)-elliptic interface problem[J]. Numerische Mathematik, 2013, 123:671-707.

[5] Durand S, Slodi?ka M.Fully discrete finite element method for Maxwell's equations with nonlinear conductivity[J]. IMA J. Numer. Anal., 2011, 31:1713-1733.

[6] Slodi?ka M, Durand S.Fully discrete finite element scheme for Maxwell's equations with non-linear boundary condition[J]. J. Math. Anal. Appl., 2011, 375:230-244.

[7] Monk P.Finite Element Methods for Maxwell's quations[M]. Oxford University Press, USA, 2003.

[8] Jiang X, Zheng W Y.An efficient eddy curent model for nonlinear Maxwell equations with laminated conductors[J]. SIAM J. Appl. Math., 2012, 72:1021-1040.

[9] Li P J, Zheng W Y.An H-ψ formulation for the three-dimensional eddy current problem in laminated structures[J]. J. Differ. Equations, 2013, 254:3476-3500.

[10] Bermúdez A, Gómez D, Salgado P, Rodríguez R, Venegas P.Numerical solution of a transient non-linear axisymmetric eddy current model with non-local boundary conditions[J]. Math. Mod. Meth. Appls., 2013, 23:2495-2521.

[11] Acevedo R, Meddahi S, Rodríguez R.An E-based mixed formulation for a time-dependent eddy current problem[J]. Math. Comput., 2009, 78:1929-1949.

[12] Albanese R, Rubinacci G.Formulation of the eddy-current problem[J]. IEEE Proc., 1990, 137:16-22.

[13] Amrouche C, Bernardi C, Dauge M, Girault V.Vector potentials in three-dimensional non-smooth domains[J]. Math Meth. Appl. Sci., 1998, 21:823-864.

[14] Bíró O, Preis K.On the use of the magnetic vector potential in the finite element analysis of three-dimensional eddy currents[J]. IEEE Tran. Magn., 1989, 25:3145-3159.

[15] Kang T, Chen T, Zhang H, Kim K I.Fully discrete A-φ finite element method for Maxwell's equations with nonlinear conductivity[J]. Numer. Meth. Part. D. E., 2014, 30:2083-2108.

[16] Kang T, Kim K I.Fully discrete potential-based finite element methods for a transient eddy current problem[J]. Computing, 2009, 85:339-362.

[17] Kim K I, Kang T.A potential-based finite element method of time-dependent Maxwell's equations[J]. Int. J. Computer Math., 2006, 83:107-122.

[18] Rodíguez A, Valli A.Eddy Current Approximation of Maxwell Equations[M]. Springer-Verlag, Italia, 2010.

[19] Zienkiewicz O C.Finite element-the basic concepts and the application to 3D magnetostatic problems[M]. John Wiley and Sons INC., London, 1980.

[20] Zeidler E.Nonlinear functional analysis and its applications II/B:Nonlinear monotone operators[M]. Springer-Verlag, New York, 1990.

[21] Ciarlet P. The finite element method for elliptic problems[M]. North-Holland, Amsterdam, 1978.

[22] Vainberg M.Variational method and method of monotone operators in the theory of nonlinear equations[M]. John Wiley, New York, 1973.

[1]唐斯琴, 李宏, 董自明, 赵智慧. 对流反应扩散方程的稳定化时间间断时空有限元解的误差估计[J]. 计算数学, 2020, 42(4): 472-486.
[2]关宏波, 洪亚鹏. 抛物型界面问题的变网格有限元方法[J]. 计算数学, 2020, 42(2): 196-206.
[3]何斯日古楞, 李宏, 刘洋, 方志朝. 非稳态奇异系数微分方程的时间间断时空有限元方法[J]. 计算数学, 2020, 42(1): 101-116.
[4]贾仲孝, 孙晓琳. 计算矩阵函数双线性形式的Krylov子空间算法的误差分析[J]. 计算数学, 2020, 42(1): 117-130.
[5]武海军. 高波数Helmholtz方程的有限元方法和连续内罚有限元方法[J]. 计算数学, 2018, 40(2): 191-213.
[6]葛志昊, 吴慧丽. 体积约束的非局部扩散问题的后验误差分析[J]. 计算数学, 2018, 40(1): 107-116.
[7]程强, 熊向团. 时间分数次扩散方程反演源项问题的迭代正则化方法[J]. 计算数学, 2017, 39(3): 295-308.
[8]单炜琨, 李会元. 双调和算子特征值问题的混合三角谱元方法[J]. 计算数学, 2017, 39(1): 81-97.
[9]曹济伟. 求解二维时谐Maxwell方程的一种混合有限元新格式[J]. 计算数学, 2016, 38(4): 429-441.
[10]赵智慧, 李宏, 罗振东. Sobolev方程的连续时空有限元方法[J]. 计算数学, 2016, 38(4): 341-353.
[11]刘金存, 李宏, 刘洋, 何斯日古楞. 非线性分数阶反应扩散方程组的间断时空有限元方法[J]. 计算数学, 2016, 38(2): 143-160.
[12]郑权, 高玥, 秦凤. Helmholtz方程外边值问题的基于修正的DtN边界条件的有限元方法[J]. 计算数学, 2016, 38(2): 200-211.
[13]石东洋, 史艳华, 王芬玲. 四阶抛物方程H1-Galerkin混合有限元方法的超逼近及最优误差估计[J]. 计算数学, 2014, 36(4): 363-380.
[14]赵智慧, 李宏, 方志朝. 非定常Stokes方程的全离散稳定化有限元格式[J]. 计算数学, 2014, 36(1): 85-98.
[15]陈红如, 陈绍春. 四阶椭圆问题的C0非协调元[J]. 计算数学, 2013, 35(1): 21-30.

--> -->
阅读次数
全文







摘要





Cited

Shared






PDF全文下载地址:

http://www.computmath.com/jssx/CN/article/downloadArticleFile.do?attachType=PDF&id=155
相关话题/计算 数学 空间 推荐 分数