[1] Ciarlet P, Jr, Wu H, Zou J.Edge element methods for Maxwell's equations with strong convergence for Gauss' laws[J]. SIAM J. Numer. Anal., 2014, 52:779-807.[2] Ciarlet P, Zou J.Fully discrete finite element approaches for time-dependent Maxwell's equa-tions[J]. Numerische Mathematik, 1999, 82:193-219.[3] Duan H Y, Li S, Roger C E Tan, Zheng W Y. A delta-regularization finite element method for a double curl problem with divergence-free constraint[J]. SIAM J. Numer. Anal., 2012, 50:3208-3230.[4] Duan H Y, Lin P, Roger C E Tan. Analysis of a continuous finite element method for H(curl,div)-elliptic interface problem[J]. Numerische Mathematik, 2013, 123:671-707.[5] Durand S, Slodi?ka M.Fully discrete finite element method for Maxwell's equations with nonlinear conductivity[J]. IMA J. Numer. Anal., 2011, 31:1713-1733.[6] Slodi?ka M, Durand S.Fully discrete finite element scheme for Maxwell's equations with non-linear boundary condition[J]. J. Math. Anal. Appl., 2011, 375:230-244.[7] Monk P.Finite Element Methods for Maxwell's quations[M]. Oxford University Press, USA, 2003.[8] Jiang X, Zheng W Y.An efficient eddy curent model for nonlinear Maxwell equations with laminated conductors[J]. SIAM J. Appl. Math., 2012, 72:1021-1040.[9] Li P J, Zheng W Y.An H-ψ formulation for the three-dimensional eddy current problem in laminated structures[J]. J. Differ. Equations, 2013, 254:3476-3500.[10] Bermúdez A, Gómez D, Salgado P, Rodríguez R, Venegas P.Numerical solution of a transient non-linear axisymmetric eddy current model with non-local boundary conditions[J]. Math. Mod. Meth. Appls., 2013, 23:2495-2521.[11] Acevedo R, Meddahi S, Rodríguez R.An E-based mixed formulation for a time-dependent eddy current problem[J]. Math. Comput., 2009, 78:1929-1949.[12] Albanese R, Rubinacci G.Formulation of the eddy-current problem[J]. IEEE Proc., 1990, 137:16-22.[13] Amrouche C, Bernardi C, Dauge M, Girault V.Vector potentials in three-dimensional non-smooth domains[J]. Math Meth. Appl. Sci., 1998, 21:823-864.[14] Bíró O, Preis K.On the use of the magnetic vector potential in the finite element analysis of three-dimensional eddy currents[J]. IEEE Tran. Magn., 1989, 25:3145-3159.[15] Kang T, Chen T, Zhang H, Kim K I.Fully discrete A-φ finite element method for Maxwell's equations with nonlinear conductivity[J]. Numer. Meth. Part. D. E., 2014, 30:2083-2108.[16] Kang T, Kim K I.Fully discrete potential-based finite element methods for a transient eddy current problem[J]. Computing, 2009, 85:339-362.[17] Kim K I, Kang T.A potential-based finite element method of time-dependent Maxwell's equations[J]. Int. J. Computer Math., 2006, 83:107-122.[18] Rodíguez A, Valli A.Eddy Current Approximation of Maxwell Equations[M]. Springer-Verlag, Italia, 2010.[19] Zienkiewicz O C.Finite element-the basic concepts and the application to 3D magnetostatic problems[M]. John Wiley and Sons INC., London, 1980.[20] Zeidler E.Nonlinear functional analysis and its applications II/B:Nonlinear monotone operators[M]. Springer-Verlag, New York, 1990.[21] Ciarlet P. The finite element method for elliptic problems[M]. North-Holland, Amsterdam, 1978.[22] Vainberg M.Variational method and method of monotone operators in the theory of nonlinear equations[M]. John Wiley, New York, 1973. |