[1] Agrawal O. Formulation of Euler-Lagrange equations for fractional variational problems[J]. J. Math. Anal. Appl., 2002, 272:368-379.[2] Agrawal O. A general formulation and solution scheme for fractional optimal control problems[J]. Nonlinear. Dynam., 2004, 38:191-206.[3] Benson D, Schumer R, Meerschaert M, Wheatcraft S. Fractional dispersion, Lévy motion, and the MADE tracer tests[J]. Transp. Por. Media., 2001, 42(1/2):211-240.[4] Benson D, Wheatcraft S, Meerschaert M. Application of a fractional advection-dispersion equation[J]. Water. Resour. Res., 2006, 36:1403-1412.[5] Benson D, Wheatcraft S, Meerschaert M. The fractional-order governing equation of Lévy motion[J]. Water. Resour. Res., 2006, 36:1413-1423.[6] Ga ychuk V, Datsko B, Meleshko V. Mathematical modeling of time fractional reactiondi usion systems[J]. J. Math. Anal. Appl., 2008, 220(1-2):215-225.[7] Gorenflo R, Mainardi F, Scalas E, Raberto M. Fractional calculus and continuous-time nance Ⅲ:the di usion limit[G]. In Mathematical nance, pages 171-180. Springer, 2001.[8] Koeller R. Applcation of fractional calculus to the theory of viscoelasticity[J]. J. Appl. Mech., 1984, 51:229-307.[9] Kusnezov D, Bulgac A, Dang G. Quantum levy processes and fractional kinetics[J]. Phys. Rev. Lett., 1999, 82:1136-1139.[10] Meerschaert M, Scalas E. Coupled continuous time random walks in nance[J]. Phys. A., 2006, 390:114-118.[11] Podlubny I. Fractional di erential equations[M]. Academic Press, 1998.[12] Raberto M, Scalas E, Mainardi F. Waiting-times and returns in high-frequency nanical data:An empirical study[J]. Phys. A., 2002, 314:749-755.[13] Carlson G E. Investigation of fractional capacitor approximation by means of regular Newton processes[D]. PhD thesis, 1964.[14] Sugimoto N. Burgers equation with a fractional derivative; hereditary effects on nonlinear acoustic waves[J]. J. Fluid. Mech., 1991, 225:631-653.[15] Oustaloup A, Coi et P. Syst emes asservis lin eaires d'ordre fractionnaire:th eorie et pratique[M]. Masson, 1983.[16] Oustaloup A, Mathieu B. La commande CRONE[M]. Hermes Science Publishing Paris, 1999.[17] Mainardi F. Fractional calculus:some basic problems in countinuum and statistical mechanics, 291-348[J]. Fract. Fract. Calc. Continuum. Mech., 378.[18] Rossikhin Y A, Shitikova M V. Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids[J]. Appl. Mech. Rev., 1997, 50(1):15-67.[19] Ichise M, Nagayanagi Y, Kojima T. An analog simulation of non-integer order transfer functions for analysis of electrode processes[J]. J. Electroanal. Chem., 1971, 33(2):253-265.[20] Sun H, Abdelwahab A, Onaral B. Linear approximation of transfer function with a pole of fractional power[J]. Ieee. T. Automat. Contr., 1984, 29(5):441-444.[21] Mainardi F. Fractional relaxation-oscillation and fractional di usion-wave phenomena[J]. Chaos. Soliton. Fract., 1996, 7(9):1461-1477.[22] Deng W. Generalized synchronization in fractional order systems[J]. Phys. Rev. E., 2007, 75(5):056201.[23] Lin Y, Xu C. Finite difference/spectral approximations for the time-fractional di usion equation[J]. J. Comput. Phys., 2007, 225(2):1533-1552.[24] Müller H P, Kimmich R, Weis J. NMR ow velocity mapping in random percolation model objects:Evidence for a power-law dependence of the volume-averaged velocity on the probevolume radius[J]. Phys. Rev. E., 1996, 54:5278-5285.[25] Amblard F, Maggs A C, Yurke B, Pargellis A N, Leibler S. Subdi usion and anomalous Local viscoelasticity in actin networks[J]. Phys. Rev. Lett., 1996, 77:4470.[26] Mainardi F. Fractional di usive waves in viscoelastic solids[J]. Nonlinear. Waves. Solids., 1995, pages 93-97.[27] Hughes B D. Random walks and random environments[J]. 1996.[28] Gu Q, Schi E, Grebner S, Wang F, Schwarz R. Non-Gaussian transport measurements and the Einstein relation in amorphous silicon[J]. Phys. Rev. Lett., 1996, 76(17):3196.[29] Klemm A, Müller H P, Kimmich R. NMR microscopy of pore-space backbones in rock, sponge, and sand in comparison with random percolation model objects[J]. Phys. Rev. E., 1997, 55(4):4413.[30] Klammler F, Kimmich R. Geometrical Restrictions of Incoherent Transport of Water by Di usion in Protein of Silica Fineparticle Systems and by Flow in a Sponge. A Study of Anomalous Properties Using an NMR Field-Gradient Technique[J]. Croat. Chem. Acta., 1992, 65(2):455-470.[31] Weber H W, Kimmich R. Anomalous segment di usion in polymers and nmr relaxation spectroscopy[J]. Macromolecules., 1993, 26(10):2597-2606.[32] Porto M, Bunde A, Havlin S, Roman H E. Structural and dynamical properties of the percolation backbone in two and three dimensions[J]. Phys. Rev. E., 1997, 56(2):1667.[33] Luedtke W, Landman U. Slip di usion and Levy ights of an adsorbed gold nanocluster[J]. Phys. Rev. Lett., 1999, 82(19):3835.[34] Shlesinger M, West B, Klafter J. Lévy dynamics of enhanced di usion:Application to turbulence[J]. Phys. Rev. Lett., 1987, 58(11):1100.[35] Bychuk O V, O'Shaughnessy B. Anomalous di usion at liquid surfaces[J]. Phys. Rev. Lett., 1995, 74(10):1795.[36] Klafter J, Blumen A, Zumofen G, Shlesinger M. Lévy walk approach to anomalous di usion[J]. Physica. A., 1990, 168(1):637-645.[37] Schau er S, Schleich W, Yakovlev V. Scaling and asymptotic laws in subrecoil laser cooling[J]. Epl-Europhys. Lett., 1997, 39(4):383.[38] Zumofen G, Klafter J. Spectral random walk of a single molecule[J]. Chem. Phys. Lett., 1994, 219(3):303-309.[39] Diethelm K, Ford N J. Analysis of fractional di erential equations[J]. J. Math. Anal. Appl., 2002, 265(2):229-248.[40] 郭柏灵, 蒲学科, 黄凤辉.分数阶偏微分方程及其数值解[M].科学出版社, 2011.[41] Ca arelli L, Vasseur A. Drift di usion equations with fractional di usion and the quasi-geostrophic equation[J]. Ann. Math., 2010, 171(3):1903-1930.[42] Kilbas A A A, Srivastava H M, Trujillo J J. Theory and applications of fractional di erential equations[M], volume 204. Elsevier Science Limited, 2006.[43] Li X, Xu C. Existence and uniqueness of the weak solution of the space-time fractional di usion equation and a spectral method approximation[J]. Commun. Comput. Phys., 2010, 8(5):1016-1051.[44] Ervin V J, Roop J P. Variational formulation for the stationary fractional advection dispersion equation[J]. Numer. Meth. Part. D. E., 2006, 22(3):558-576.[45] Sakamoto K, Yamamoto M. Initial value/boundary value problems for fractional di usion-wave equations and applications to some inverse problems[J]. J. Math. Anal. Appl., 2011, 382(1):426-447.[46] Lubich C. Discretized fractional calculus[J]. Siam. J. Math. Anal., 1986, 17(3):704-719.[47] Diethelm K, Walz G. Numerical solution of fractional order di erential equations by extrapolation[J]. Numer. Algorithms., 1997, 16(3-4):231-253.[48] Diethelm K, Ford N J, Freed A D. A predictor-corrector approach for the numerical solution of fractional di erential equations[J]. Nonlinear. Dynam., 2002, 29(1-4):3-22.[49] Diethelm K, Ford N J, Freed A D. Detailed error analysis for a fractional Adams method[J]. Numer. Algorithms., 2004, 36(1):31-52.[50] Liu F, Shen S, Anh V, Turner I. Analysis of a discrete non-Markovian random walk approximation for the time fractional di usion equation[J]. Anziam. J., 2005, 46:488-504.[51] Langlands T, Henry B. The accuracy and stability of an implicit solution method for the fractional di usion equation[J]. J. Comput. Phys., 2005, 205(2):719-736.[52] Zhang Y, Sun Z. Alternating direction implicit schemes for the two-dimensional fractional subdi usion equation[J]. J. Comput. Phys., 2011, 230(24):8713-8728.[53] Wang H, Wang K. An O(N log2 N) alternating-direction nite difference method for twodimensional fractional di usion equations[J]. J. Comput. Phys., 2011.[54] Sun H, Chen W, Li C, Chen Y. Finite difference schemes for variable-order time fractional di usion equation[J]. Int. J. Bifurcat. Chaos., 2012, 22(04):1250085.[55] Li X, Xu C. A space-time spectral method for the time fractional di usion equation.[J]. Siam. J. Numer. Anal., 2009, 47(3):2108-2131.[56] Lin Y, Li X, Xu C. Finite difference/Spectral approximations for the fractional cable equation[J]. Math. Comput., 2011, 80(275):1369-1396.[57] Lv C, Xu C. Improved error estimates of a nite difference/spectral method for time-fractional di usion equations[J]. Int. J. Numer. Anal. Mod., 2015, 12(2):384-400.[58] Ford N J, Simpson A C. The numerical solution of fractional di erential equations:speed versus accuracy[J]. Numer. Algorithms., 2001, 26(4):333-346.[59] Diethelm K, Freed A D. An effcient algorithm for the evaluation of convolution integrals[J]. Comput. Math. Appl., 2006, 51(1):51-72.[60] Cao J, Xu C,Wang Z. A high order nite difference/spectral approximations to the time fractional di usion equations[J]. Adv. Mater. Res., 2014, 875:781-785.[61] Lv C, Xu C. Error analysis of a high order method for time-fractional di usion equations[J]. submitted, 2015.[62] Cao J, Xu C. A high order schema for the numerical solution of the fractional ordinary di erential equations[J]. J. Comput. Phys., 2013, 238(2):154-168.[63] Meerschaert M M, Tadjeran C. Finite difference approximations for fractional advection-dispersion ow equations[J]. J. Comput. Appl. Math., 2004, 172(1):65-77.[64] Meerschaert M M, Tadjeran C. Finite difference approximations for two-sided space-fractional partial di erential equations[J]. Appl. Numer. Math., 2006, 56(1):80-90.[65] Liu F, Anh V, Turner I. Numerical solution of the space fractional Fokker-Planck equation[J]. J. Comput. Appl. Math., 2004, 166:209-219.[66] Jin B, Lazarov R, Zhou Z. Error estimates for a semidiscrete nite element method for fractional order parabolic equations[J]. Siam. J. Numer. Anal., 2013, 51(1):445-466.[67] Meerschaert M, Sche er H, Tadjeran C. Finite difference methods for two dimensional fractional dispersion equation[J]. J. Comput. Phys., 2006, 211:249-261.[68] Tadjeran C, Meerschaert M. A second-order accurate numerical method for the two-dimensional di usion equation[J]. J. Comput. Phys., 2007, 220:813-823.[69] Sousa E. Numerical approximations for fractional di usion equations via splines[J]. Comput. Math. Appl., 2011, 62:938-944.[70] Liu F, Zhuang P, Anh V, Turner I, Burrage K. Stability and convergence of the difference methods for the space-time fractional advection-di usion equation[J]. Appl. Math. Comput., 2007, 191(1):12-20.[71] Yang Q, Liu F, Turner I. Numerical methods for fractional partial di erential equations with Riesz space fractional derivatives[J]. Appl. Math. Model., 2010, 34(1):200-218.[72] Deng W. Finite element method for the space and time fractional Fokker-Planck equation[J]. Siam. J. Numer. Anal., 2008, 47:204-226.[73] Wang H, Du N. Fast alternating-direction nite difference methods for three-dimensional spacefractional di usion equations[J]. J. Comput. Phys., 2013, 258:305-318.[74] Song F, Xu C. Spectral direction splitting methods for two-dimensional space fractional di usion equations[J]. J. Comput. Phys., 2015, 299:196-214.[75] Chen S, Shen J, Wang L. Generalized Jacobi functions and their applications to fractional di erential equations[J]. arXiv preprint arXiv:1407.8303, 2014.[76] Zayernouri M, Karniadakis G E. Fractional Sturm-Liouville eigen-problems:theory and numerical approximation[J]. J. Comput. Phys., 2013, 252:495-517.[77] Zayernouri M, Karniadakis G E. Exponentially accurate spectral and spectral element methods for fractional ODEs[J]. J. Comput. Phys., 2014, 257:460-480. |