删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

分数阶微分方程的理论和数值方法研究

本站小编 Free考研考试/2021-12-27

林世敏, 许传炬
厦门大学数学科学学院,福建省数学建模与高性能科学计算实验室, 厦门 361005
收稿日期:2015-09-01出版日期:2016-02-15发布日期:2016-01-22


基金资助:国家自然科学基金11471274,11421110001和91130002资助项目


THEORETICAL AND NUMERICAL INVESTIGATION OF FRACTIONAL DIFFERENTIAL EQUATIONS

Lin Shimin, Xu Chuanju
School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Modeling and High Performance Scientic Computing, Xiamen University, Xiamen 361005, Fujian, China
Received:2015-09-01Online:2016-02-15Published:2016-01-22







摘要



编辑推荐
-->


分数阶偏微分方程的研究有很长的历史,并在最近十多年得到快速发展.相比极为有限的理论成果,数值方法的研究成果已经相当丰富,几个国际研究团队对此作出了贡献.本文旨在对分数阶微分方程的理论与数值方法研究成果做个简要的评价,聚焦总结评述与高阶方法发展密切相关的研究.主要内容为讨论最基本的三类方程:时间分数阶扩散方程、空间分数阶扩散方程、以及时空分数阶扩散方程的理论进展和数值方法研究在最近十年取得的结果.我们还有针对性地选择一些算例,用以说明几个重要方法的精度和有效性.
MR(2010)主题分类:
26A33
45K05
65N06
65N12
65N35

分享此文:


()

[1] Agrawal O. Formulation of Euler-Lagrange equations for fractional variational problems[J]. J. Math. Anal. Appl., 2002, 272:368-379.

[2] Agrawal O. A general formulation and solution scheme for fractional optimal control problems[J]. Nonlinear. Dynam., 2004, 38:191-206.

[3] Benson D, Schumer R, Meerschaert M, Wheatcraft S. Fractional dispersion, Lévy motion, and the MADE tracer tests[J]. Transp. Por. Media., 2001, 42(1/2):211-240.

[4] Benson D, Wheatcraft S, Meerschaert M. Application of a fractional advection-dispersion equation[J]. Water. Resour. Res., 2006, 36:1403-1412.

[5] Benson D, Wheatcraft S, Meerschaert M. The fractional-order governing equation of Lévy motion[J]. Water. Resour. Res., 2006, 36:1413-1423.

[6] Ga ychuk V, Datsko B, Meleshko V. Mathematical modeling of time fractional reactiondi usion systems[J]. J. Math. Anal. Appl., 2008, 220(1-2):215-225.

[7] Gorenflo R, Mainardi F, Scalas E, Raberto M. Fractional calculus and continuous-time nance Ⅲ:the di usion limit[G]. In Mathematical nance, pages 171-180. Springer, 2001.

[8] Koeller R. Applcation of fractional calculus to the theory of viscoelasticity[J]. J. Appl. Mech., 1984, 51:229-307.

[9] Kusnezov D, Bulgac A, Dang G. Quantum levy processes and fractional kinetics[J]. Phys. Rev. Lett., 1999, 82:1136-1139.

[10] Meerschaert M, Scalas E. Coupled continuous time random walks in nance[J]. Phys. A., 2006, 390:114-118.

[11] Podlubny I. Fractional di erential equations[M]. Academic Press, 1998.

[12] Raberto M, Scalas E, Mainardi F. Waiting-times and returns in high-frequency nanical data:An empirical study[J]. Phys. A., 2002, 314:749-755.

[13] Carlson G E. Investigation of fractional capacitor approximation by means of regular Newton processes[D]. PhD thesis, 1964.

[14] Sugimoto N. Burgers equation with a fractional derivative; hereditary effects on nonlinear acoustic waves[J]. J. Fluid. Mech., 1991, 225:631-653.

[15] Oustaloup A, Coi et P. Syst emes asservis lin eaires d'ordre fractionnaire:th eorie et pratique[M]. Masson, 1983.

[16] Oustaloup A, Mathieu B. La commande CRONE[M]. Hermes Science Publishing Paris, 1999.

[17] Mainardi F. Fractional calculus:some basic problems in countinuum and statistical mechanics, 291-348[J]. Fract. Fract. Calc. Continuum. Mech., 378.

[18] Rossikhin Y A, Shitikova M V. Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids[J]. Appl. Mech. Rev., 1997, 50(1):15-67.

[19] Ichise M, Nagayanagi Y, Kojima T. An analog simulation of non-integer order transfer functions for analysis of electrode processes[J]. J. Electroanal. Chem., 1971, 33(2):253-265.

[20] Sun H, Abdelwahab A, Onaral B. Linear approximation of transfer function with a pole of fractional power[J]. Ieee. T. Automat. Contr., 1984, 29(5):441-444.

[21] Mainardi F. Fractional relaxation-oscillation and fractional di usion-wave phenomena[J]. Chaos. Soliton. Fract., 1996, 7(9):1461-1477.

[22] Deng W. Generalized synchronization in fractional order systems[J]. Phys. Rev. E., 2007, 75(5):056201.

[23] Lin Y, Xu C. Finite difference/spectral approximations for the time-fractional di usion equation[J]. J. Comput. Phys., 2007, 225(2):1533-1552.

[24] Müller H P, Kimmich R, Weis J. NMR ow velocity mapping in random percolation model objects:Evidence for a power-law dependence of the volume-averaged velocity on the probevolume radius[J]. Phys. Rev. E., 1996, 54:5278-5285.

[25] Amblard F, Maggs A C, Yurke B, Pargellis A N, Leibler S. Subdi usion and anomalous Local viscoelasticity in actin networks[J]. Phys. Rev. Lett., 1996, 77:4470.

[26] Mainardi F. Fractional di usive waves in viscoelastic solids[J]. Nonlinear. Waves. Solids., 1995, pages 93-97.

[27] Hughes B D. Random walks and random environments[J]. 1996.

[28] Gu Q, Schi E, Grebner S, Wang F, Schwarz R. Non-Gaussian transport measurements and the Einstein relation in amorphous silicon[J]. Phys. Rev. Lett., 1996, 76(17):3196.

[29] Klemm A, Müller H P, Kimmich R. NMR microscopy of pore-space backbones in rock, sponge, and sand in comparison with random percolation model objects[J]. Phys. Rev. E., 1997, 55(4):4413.

[30] Klammler F, Kimmich R. Geometrical Restrictions of Incoherent Transport of Water by Di usion in Protein of Silica Fineparticle Systems and by Flow in a Sponge. A Study of Anomalous Properties Using an NMR Field-Gradient Technique[J]. Croat. Chem. Acta., 1992, 65(2):455-470.

[31] Weber H W, Kimmich R. Anomalous segment di usion in polymers and nmr relaxation spectroscopy[J]. Macromolecules., 1993, 26(10):2597-2606.

[32] Porto M, Bunde A, Havlin S, Roman H E. Structural and dynamical properties of the percolation backbone in two and three dimensions[J]. Phys. Rev. E., 1997, 56(2):1667.

[33] Luedtke W, Landman U. Slip di usion and Levy ights of an adsorbed gold nanocluster[J]. Phys. Rev. Lett., 1999, 82(19):3835.

[34] Shlesinger M, West B, Klafter J. Lévy dynamics of enhanced di usion:Application to turbulence[J]. Phys. Rev. Lett., 1987, 58(11):1100.

[35] Bychuk O V, O'Shaughnessy B. Anomalous di usion at liquid surfaces[J]. Phys. Rev. Lett., 1995, 74(10):1795.

[36] Klafter J, Blumen A, Zumofen G, Shlesinger M. Lévy walk approach to anomalous di usion[J]. Physica. A., 1990, 168(1):637-645.

[37] Schau er S, Schleich W, Yakovlev V. Scaling and asymptotic laws in subrecoil laser cooling[J]. Epl-Europhys. Lett., 1997, 39(4):383.

[38] Zumofen G, Klafter J. Spectral random walk of a single molecule[J]. Chem. Phys. Lett., 1994, 219(3):303-309.

[39] Diethelm K, Ford N J. Analysis of fractional di erential equations[J]. J. Math. Anal. Appl., 2002, 265(2):229-248.

[40] 郭柏灵, 蒲学科, 黄凤辉.分数阶偏微分方程及其数值解[M].科学出版社, 2011.

[41] Ca arelli L, Vasseur A. Drift di usion equations with fractional di usion and the quasi-geostrophic equation[J]. Ann. Math., 2010, 171(3):1903-1930.

[42] Kilbas A A A, Srivastava H M, Trujillo J J. Theory and applications of fractional di erential equations[M], volume 204. Elsevier Science Limited, 2006.

[43] Li X, Xu C. Existence and uniqueness of the weak solution of the space-time fractional di usion equation and a spectral method approximation[J]. Commun. Comput. Phys., 2010, 8(5):1016-1051.

[44] Ervin V J, Roop J P. Variational formulation for the stationary fractional advection dispersion equation[J]. Numer. Meth. Part. D. E., 2006, 22(3):558-576.

[45] Sakamoto K, Yamamoto M. Initial value/boundary value problems for fractional di usion-wave equations and applications to some inverse problems[J]. J. Math. Anal. Appl., 2011, 382(1):426-447.

[46] Lubich C. Discretized fractional calculus[J]. Siam. J. Math. Anal., 1986, 17(3):704-719.

[47] Diethelm K, Walz G. Numerical solution of fractional order di erential equations by extrapolation[J]. Numer. Algorithms., 1997, 16(3-4):231-253.

[48] Diethelm K, Ford N J, Freed A D. A predictor-corrector approach for the numerical solution of fractional di erential equations[J]. Nonlinear. Dynam., 2002, 29(1-4):3-22.

[49] Diethelm K, Ford N J, Freed A D. Detailed error analysis for a fractional Adams method[J]. Numer. Algorithms., 2004, 36(1):31-52.

[50] Liu F, Shen S, Anh V, Turner I. Analysis of a discrete non-Markovian random walk approximation for the time fractional di usion equation[J]. Anziam. J., 2005, 46:488-504.

[51] Langlands T, Henry B. The accuracy and stability of an implicit solution method for the fractional di usion equation[J]. J. Comput. Phys., 2005, 205(2):719-736.

[52] Zhang Y, Sun Z. Alternating direction implicit schemes for the two-dimensional fractional subdi usion equation[J]. J. Comput. Phys., 2011, 230(24):8713-8728.

[53] Wang H, Wang K. An O(N log2 N) alternating-direction nite difference method for twodimensional fractional di usion equations[J]. J. Comput. Phys., 2011.

[54] Sun H, Chen W, Li C, Chen Y. Finite difference schemes for variable-order time fractional di usion equation[J]. Int. J. Bifurcat. Chaos., 2012, 22(04):1250085.

[55] Li X, Xu C. A space-time spectral method for the time fractional di usion equation.[J]. Siam. J. Numer. Anal., 2009, 47(3):2108-2131.

[56] Lin Y, Li X, Xu C. Finite difference/Spectral approximations for the fractional cable equation[J]. Math. Comput., 2011, 80(275):1369-1396.

[57] Lv C, Xu C. Improved error estimates of a nite difference/spectral method for time-fractional di usion equations[J]. Int. J. Numer. Anal. Mod., 2015, 12(2):384-400.

[58] Ford N J, Simpson A C. The numerical solution of fractional di erential equations:speed versus accuracy[J]. Numer. Algorithms., 2001, 26(4):333-346.

[59] Diethelm K, Freed A D. An effcient algorithm for the evaluation of convolution integrals[J]. Comput. Math. Appl., 2006, 51(1):51-72.

[60] Cao J, Xu C,Wang Z. A high order nite difference/spectral approximations to the time fractional di usion equations[J]. Adv. Mater. Res., 2014, 875:781-785.

[61] Lv C, Xu C. Error analysis of a high order method for time-fractional di usion equations[J]. submitted, 2015.

[62] Cao J, Xu C. A high order schema for the numerical solution of the fractional ordinary di erential equations[J]. J. Comput. Phys., 2013, 238(2):154-168.

[63] Meerschaert M M, Tadjeran C. Finite difference approximations for fractional advection-dispersion ow equations[J]. J. Comput. Appl. Math., 2004, 172(1):65-77.

[64] Meerschaert M M, Tadjeran C. Finite difference approximations for two-sided space-fractional partial di erential equations[J]. Appl. Numer. Math., 2006, 56(1):80-90.

[65] Liu F, Anh V, Turner I. Numerical solution of the space fractional Fokker-Planck equation[J]. J. Comput. Appl. Math., 2004, 166:209-219.

[66] Jin B, Lazarov R, Zhou Z. Error estimates for a semidiscrete nite element method for fractional order parabolic equations[J]. Siam. J. Numer. Anal., 2013, 51(1):445-466.

[67] Meerschaert M, Sche er H, Tadjeran C. Finite difference methods for two dimensional fractional dispersion equation[J]. J. Comput. Phys., 2006, 211:249-261.

[68] Tadjeran C, Meerschaert M. A second-order accurate numerical method for the two-dimensional di usion equation[J]. J. Comput. Phys., 2007, 220:813-823.

[69] Sousa E. Numerical approximations for fractional di usion equations via splines[J]. Comput. Math. Appl., 2011, 62:938-944.

[70] Liu F, Zhuang P, Anh V, Turner I, Burrage K. Stability and convergence of the difference methods for the space-time fractional advection-di usion equation[J]. Appl. Math. Comput., 2007, 191(1):12-20.

[71] Yang Q, Liu F, Turner I. Numerical methods for fractional partial di erential equations with Riesz space fractional derivatives[J]. Appl. Math. Model., 2010, 34(1):200-218.

[72] Deng W. Finite element method for the space and time fractional Fokker-Planck equation[J]. Siam. J. Numer. Anal., 2008, 47:204-226.

[73] Wang H, Du N. Fast alternating-direction nite difference methods for three-dimensional spacefractional di usion equations[J]. J. Comput. Phys., 2013, 258:305-318.

[74] Song F, Xu C. Spectral direction splitting methods for two-dimensional space fractional di usion equations[J]. J. Comput. Phys., 2015, 299:196-214.

[75] Chen S, Shen J, Wang L. Generalized Jacobi functions and their applications to fractional di erential equations[J]. arXiv preprint arXiv:1407.8303, 2014.

[76] Zayernouri M, Karniadakis G E. Fractional Sturm-Liouville eigen-problems:theory and numerical approximation[J]. J. Comput. Phys., 2013, 252:495-517.

[77] Zayernouri M, Karniadakis G E. Exponentially accurate spectral and spectral element methods for fractional ODEs[J]. J. Comput. Phys., 2014, 257:460-480.

[1]王文强, 李东方. 线性变系数中立型变延迟微分方程谱方法的收敛性[J]. 计算数学, 2012, 34(1): 68-80.
[2]高建芳, 张艳英, 唐黎明. 种群动力系统的数值解的振动性分析[J]. 计算数学, 2011, 33(4): 357-366.
[3]周婷, 向新民. 无界域上半线性强阻尼波动方程的全离散有理谱逼近[J]. 计算数学, 2009, 31(4): 335-348.
[4]刘霖雯,刘超,江成顺,. 一类非线性伪抛物型方程的伪谱解法[J]. 计算数学, 2007, 29(1): 99-12.
[5]郑华盛,赵宁,成娟. 一维高精度离散GDQ方法[J]. 计算数学, 2004, 26(3): 293-302.
[6]徐阳,赵景军,刘明珠. 二阶延迟微分方程θ-方法的TH-稳定性[J]. 计算数学, 2004, 26(2): 189-192.
[7]叶兴德,程晓良. Cahn—Hilliard方程的Legendre谱逼近[J]. 计算数学, 2003, 25(2): 157-170.
[8]杜其奎,余德浩. 抛物型初边值问题的自然积分方程及其数值解法[J]. 计算数学, 1999, 21(4): 495-506.
[9]吕淑娟,张法勇. 广义KdV-Burgers方程长时间性态的谱方法[J]. 计算数学, 1999, 21(2): 129-138.

--> -->
阅读次数
全文







摘要





Cited

Shared






PDF全文下载地址:

http://www.computmath.com/jssx/CN/article/downloadArticleFile.do?attachType=PDF&id=51
相关话题/数学 计算 分数 厦门大学 空间

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 一类带有空间时间白噪音随机弹性方程的全离散差分格式
    张英晗,杨小远北京航空航天大学数学与系统科学学院,北京100191收稿日期:2014-10-13出版日期:2016-02-15发布日期:2016-01-22基金资助:国家自然科学基金(61271010);北京市自然科学基金(4152029)及北京航空航天大学博士创新基金资助项目FULL-DISCRE ...
    本站小编 Free考研考试 2021-12-27
  • 数学与系统科学研究院举办华罗庚先生诞辰110周年纪念大会
    11月12日上午9点,中国科学院数学与系统科学研究院(以下简称数学院)召开华罗庚先生诞辰110周年纪念大会,会场设在数学院南楼。参加的院士包括王元、杨乐、石钟慈、林群、崔俊芝、严加安、郭雷、周向宇等,数学院院长席南华院士、副院长巩馥洲等院所领导,以及职工、离退休、研究生、来自北航华罗庚班的同学代表等 ...
    本站小编 Free考研考试 2021-12-26
  • 中国科学院青促会信管分会与数学院学术研讨会在我院举行
    11月3日,中国科学院青年创新促进会信管分会与数学与系统科学研究院学术研讨会在我院顺利召开。来自自动化研究所、沈阳自动化研究所、软件研究所、计算技术研究所、战略咨询研究院及我院的30位青年科研骨干和研究生齐聚数学院进行学术交流。我院党委书记武艰、常务副院长高小山出席会议。  开幕式上,高小山副院长代 ...
    本站小编 Free考研考试 2021-12-26
  • 半空间中Boltzmann方程镜面反射边值问题的Hilbert展开(黄飞敏、王勇)
    Boltzmann 方程是统计物理中的基本方程,被用来描述稀薄气体的运动规律。Boltzmann方程到可压缩Euler方程的流体动力学极限的研究最早可追溯到Maxwell和Boltzmann,是著名的Hilbert第六问题的主要内容之一。 Hilbert于1912年提出了Boltzmann方程的Hi ...
    本站小编 Free考研考试 2021-12-26
  • Bianchi模形式空间维数的增速估计(胡永泉)
    Bianchi模形式是指定义在虚二次域上的模形式。对于固定的权和级群,不能利用经典的黎曼-洛赫定理来计算这类模形式空间的维数,且至今仍然没有精确的计算公式。该成果利用群GL2(Qp)上的p进 Langlands 对应,得到了这类模形式空间维数的渐进增速的上界,大大改进了之前的结果。相关文章已被J. ...
    本站小编 Free考研考试 2021-12-26
  • 量子计算基础理论和量子点元胞自动机的器件设计优化(尚云 陆汝钤)
    一.量子计算基础理论  1. 在新型量子通讯原理方面  我们通过引入两硬币量子游走模型首次将量子游走应用于量子通信协议中,分别提出了基于直线,圆,完备图和正则图上的量子隐形传输模型【1,2】;第一次将两硬币量子游走模型用于完美状态转移协议的设计,对比已存单硬币模型初次实现了高维态在一般图形上的最优状 ...
    本站小编 Free考研考试 2021-12-26
  • DNA计算的发展现状及未来展望
    杨姗1,2,李金玉1,2,崔玉军1,2,滕越1,21.军事科学院军事医学研究院微生物流行病研究所,北京100071;2.病原微生物生物安全国家重点实验室,北京100071收稿日期:2020-07-04;接收日期:2020-10-16;网络出版时间:2020-10-22摘要:随着高性能计算需求的不断增 ...
    本站小编 Free考研考试 2021-12-26
  • 基于多重计算设计策略提高枯草芽孢杆菌脂肪酶的热稳定性
    向玉*,张萌*,许菲江南大学生物工程学院糖化学与生物技术教育部重点实验室,江苏无锡214122收稿日期:2019-12-02;接收日期:2020-02-04基金项目:国家自然科学基金(No.31800671),中国博士后科学基金(No.2019M651691)资助摘要:提高酶的热稳定性是生物催化领域 ...
    本站小编 Free考研考试 2021-12-26
  • 工业酶研究中的计算化学方法
    刘海燕中国科学技术大学生命科学学院,安徽合肥230026收稿日期:2019-07-03;接收日期:2019-08-19基金项目:国家自然科学基金(No.21773220)资助作者简介:刘海燕??中国科学技术大学生命科学学院教授。于中国科学技术大学获学士(1990年)和博士(1996年)学位。曾在瑞士 ...
    本站小编 Free考研考试 2021-12-26
  • 工业蛋白质构效关系的计算生物学解析
    陈琦,李春秀,郑高伟,郁惠蕾,许建和华东理工大学生物工程学院,上海200237收稿日期:2019-07-23;接收日期:2019-09-16基金项目:上海市自然科学基金(No.19ZR1472900),国家自然科学基金(Nos.31971380,21536004,21672063,21776085) ...
    本站小编 Free考研考试 2021-12-26