[1] Podlubny I. Fractional Differential Equations[M]. New York:Academic Press, 1999.[2] Liu F, Zhuang P, Anh V, Turner I, Burrage K. Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation[J]. Appl. Math. Comput., 2007, 191:12-20.[3] Sun Z Z, Wu X N. A fully discrete difference scheme for a diffusion-wave system[J]. Appl. Numer. Math., 2006, 56:193-209.[4] Yuste S B, Acedo L. An explicit finite difference method and a new von Numann-type stability analysis for fractional diffusion equation[J]. SIAM J. Numer. Anal., 2005, 42:1862-1874.[5] Li X J, Xu C J. Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation[J]. Commun. Comput. Phys., 2010, 8(5):1016-1051.[6] Ervin V J, Roop J P. Variational formaulation for the stationary fractional advection dispersion equation[J]. Numer. Methods Partial Differential Equations, 2006, 22(3):558-576.[7] Deng W H. Finite element method for the space and time fractional Fokker-Planck equation[J]. SIAM J. Numer. Anal., 2008, 47:204-226.[8] Zhang H, Liu F, Anh V. Galerkin finite element approximation of symmetric space-fractional partial differential equations[J]. Appl. Math. Comput., 2010, 217:2534-2545.[9] Li C P, Zhao Z G, Chen Y Q. Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion[J]. Comput. Math. Appl., 2011, 62:855-875.[10] Ford N J, Xiao J Y, Yan Y B. A finite element method for time fractional partial differential equations[J]. Fract. Calc. Appl. Anal., 2011, 14:454-574.[11] Bu W P, Liu X T, Tang Y F, Yang J Y. Finite element multigrid method for multi-term time fractional advection diffusion equations[J]. Int. J. Model. Simul. Sci. Comput., 2015, 6 DOI:10.1142/S1793962315400012.[12] Mustapha K, McLean W. Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation[J]. Numer. Algor., 2011, 56:159-184.[13] Zheng Y Y, Li C P, Zhao Z G. A fully discrete discontinuous Galerkin method for nonlinear fractional Fokker-Planck equation[J]. Math. Probl. Eng., 2010, Article ID 279038, 26 pages.[14] 刘金存, 李宏. A space-time finite element method for the semilinear fractional diffusion equation:the discontinuous Galerkin method[J]. 应用数学, 2013, 26(4):853-862.[15] Ahmad B, Alhothuali M S, Alsulami H H, Kirane M, Timoshin S. On nonlinear nonlocal systems of reaction diffusion equations[J]. Abstr. Appl. Anal., 2014, Article ID 804784, 6 pages.[16] Karakashian C, Makridakis C. A space-time finite element method for the nonlinear Schrödinger the discontinuous Galerkin method[J]. Math. Comp., 1998, 97(222):479-499.[17] Yang Q, Liu F, Turner I. Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Appl. Math. Model., 2010, 34:200-218.[18] Davis P J, Rabinowitz P. Methods of Numerical Integration[M]. New York:Academic Press, 1975.[19] Brenner B C, Scott L R. The Mathematical Theory of Finite Element Methods[M]. New York:Springer-verlag, 1994. |