[1] Sloan I H. Error analysis for a class of degenerate-kernel methods[J]. Numer. Math., 1976, 25(3):231-238.[2] Sloan I H. Convergence of degenerate kernel methods[J]. J. Aust. Math. Soc. Series B-Appl. Math., 1976, 19(4):422-431.[3] Atkinson K E. The Numerical Solution of Integral Equations of the Second Kind[M]. Cambridge University Press, 1997.[4] Karimi S, Jozi M. Numerical solution of the system of linear Fredholm integral equations based on degenerating kernels[J]. TWMS J. Pure Appl. Math., 2015, 6(1):111-119.[5] Hämmerlin G, Schumaker L L. Procedures for kernel approximation and solution of Fredholm integral equations of the second kind[J]. Numer. Math., 1980, 34:125-141.[6] Wazwaz A M. Linear and Nonlinear Integral Equations:Methods and Applications[M]. Berlin:Springer-Verlag, 2011.[7] Dellwo D R. Accelerated degenerate-kernel methods for linear integral equations[J]. J. Comput. Appl. Math., 1995, 58(2):135-149.[8] Guebbai H, Grammont L. A new degenerate kernel method for a weakly singular integral equation[J]. Appl. Math. Comput., 2014, 230:414-427.[9] 沈以淡. 积分方程(第3版)[M]. 北京:清华大学出版社, 2012.[10] Kaneko H, Xu Y S. Degenerate kernel method for Hammerstein equations[J]. Math. Comp., 1991, 56(193):141-148.[11] Ikebe Y. The Galerkin method for the numerical solution of Fredholm integral equations of the second kind[J]. SIAM Rev., 1972, 14(3):465-491.[12] Okayama T, Matsuo T, Sugihara M. Sinc-collocation methods for weakly singular Fredholm integral equations of the second kind[J]. J. Comput. Appl. Math., 2010, 234(4):1211-1227.[13] Atkinson K E, Shampine L F. Algorithm876:Solving Fredholm integral equations of the second kind in Matlab[J]. ACM Trans. Math. Software, 2008, 34(4), Article 21:1-20.[14] 吕涛, 黄晋. 积分方程的高精度算法[M]. 北京:科学出版社, 2013.[15] Occorsio D, Russo M G. Numerical methods for Fredholm integral equations on the square[J]. Appl. Math. Comput., 2011, 218(5):2318-2333.[16] Orav-Puurand K, Pedas A, Vainikko G. Nyström type methods for Fredholm integral equations with weak singularities[J]. J. Comput. Appl. Math., 2010, 234(9):2848-2858.[17] Giuseppe M, Gradimir V. M. Well-conditioned matrices for numerical treatment of Fredholm integral equations of the second kind[J]. Numer. Linear Algebra Appl., 2009, 16(11-12):995-1011.[18] Chen Q S, Lin F R. A modified Nyström-Clenshaw-Curtis quadrature for integral equations with piecewise smooth kernels[J]. Appl. Numer. Math., 2014, 85:77-89.[19] 王同科, 佘海艳, 刘志方. 分数阶光滑函数线性和二次插值公式余项估计[J]. 计算数学, 2014, 36(4):393-406.[20] Kolwankar K M. Recursive local fractional derivative[J]. arXiv preprint arXiv:1312.7675(2013).[21] Liu Z F, Wang T K, Gao G H. A local fractional Taylor expansion and its computation for insufficiently smooth functions[J]. East Asian Journal on Applied Mathematics, 2015, 5(2):176-191.[22] Wang T K, Li N, Gao G H. The asymptotic expansion and extrapolation of trapezoidal rule for integrals with fractional order singularities[J]. Int. J. Comput. Math., 2015, 92(3):579-590.[23] Wang T K, Liu Z F, Zhang Z Y. The modified composite Gauss type rules for singular integrals using Puiseux expansions[J]. Math. Comp, 2017, 86(303):345-373.[24] Wang T K, Zhang Z Y, Liu Z F. The practical Gauss type rules for Hadamard finite-part integrals using Puiseux expansions[J]. Adv. Comput. Math., 2017, 43(2):319-350.[25] Wang T K, Gu Y S, Zhang Z Y. An algorithm for the inversion of Laplace transforms using Puiseux expansions[J]. Numer. Algorithms, 2018, 78(1):107-132.[26] 樊梦, 王同科, 常慧宾. 非光滑函数的分数阶插值公式[J]. 计算数学, 2016, 38(2):212-224. |