[1] Hao Z, Sun Z, Cao W. A fourth-order approximation of fractional derivatives with its applications[J]. Journal of Computational Physics, 2015, 281:787-805.[2] Zhou H, Tian W, Deng W. Quasi-compact finite difference schemes for space fractional diffusion equations[J]. Journal of Scientific Computing, 2013, 56(1):45-66.[3] Yu Y, Deng W, Wu Y. High-order quasi-compact difference schemes for fractional diffusion equations[J]. Communications in Mathematical Sciences, 2017, 15(5):1183-1209.[4] Cao X, Cao X, Wen L. The implicit midpoint method for the modified anomalous sub-diffusion equation with a nonlinear source term[J]. Journal of Computational and Applied Mathematics, 2017, 318:199-210.[5] Choi H, Chung S, Lee Y. Numerical solutions for space-fractional dispersion equations with nonlinear source terms[J]. Bulletin of the Korean Mathematical Society, 2010, 47(6):1225-1234.[6] Moroney T, Yang Q. Efficient solution of two-sided nonlinear space-fractional diffusion equations using fast poisson preconditioners[J]. Journal of Computational Physics, 2013, 246(246):304-317.[7] Liu F, Chen S, Turner I, Burrage K, Anh V. Numerical simulation for two-dimensional Riesz space fractional diffusion equations with a nonlinear reaction term[J]. Central European Journal of Physics, 2013, 11(10):1221-1232.[8] Chen S, Liu F, Jiang. X, Turner I, Anh V. A fast semi-implicit difference method for a nonlinear two-sided space-fractional diffusion equation with variable diffusivity coefficients[J]. Applied Mathematics and Computation, 2015, 257:591-601.[9] Bu W, Tang Y, Wu Y, Yang J. Crank-Nicolson ADI Galerkin finite element method for twodimensional fractional FitzHugh-Nagumo monodomain model[J]. Applied Mathematics and Computation, 2015, 257:355-364.[10] Choi Y, Chung S. Finite element solutions for the space-fractional diffusion equation with a nonlinear source term[J]. Abstract and Applied Analysis, 2012, 2012:183-201.[11] Li Y, Wang D. Improved efficient difference method for the modified anomalous sub-diffusion equation with a nonlinear source term[J]. International Journal of Computer Mathematics, 2017, 94(4):821-840.[12] Chan R, Jin X. An Introduction to Iterative Toeplitz Solvers[M]. Philadelphia:SIAM, 2007.[13] Kilbas A, Srivastava H, Trujillo J. Theory and Applications of Fractional Differential Equations[M]. Elsevier Science Limited, 2006.[14] Meerschaert M, Tadjeran C. Finite difference approximations for fractional advection dispersion flow equations[J]. Journal of Computational and Applied Mathematics, 2004, 172(1):65-77.[15] Liu F, Zhang H. Numerical simulation of the Riesz fractional diffusion equation with a nonlinear source term[J], Journal of Applied Mathematics and Informatics, 2008, 26(1-2):1-14.[16] Pang H, Sun H. Fourth order finite difference schemes for time space fractional sub-diffusion equations[J]. Computers & Mathematics with Applications, 2016, 71(6):1287-1302.[17] Liu Y, Du Y, Li H, He S, Gao W. Finite difference/finite element method for a nonlinear timefractional fourth-order reaction-diffusion problem[J]. Computers & Mathematics with Applications, 2015, 70(4):573-591.[18] Liu Y, Du Y, Li H, Wang J. A two-grid finite element approximation for a nonlinear time-fractional Cable equation[J]. Nonlinear Dynamics, 2016, 85(4):2535-2548.[19] Wang D, Xiao A, Yang W. Crank-Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative[J]. Journal of Computational Physics, 2013, 242(242):670-681. |