[1] Pavlovic G, Tekalp A. Maximum likelihood parametric blur identification based on acontinuous spatial domain model[J]. IEEE Transactions on image processing, 1992, 1(4):496-504.[2] Buzug T M. Computed tomography:from photon statistics to modern cone-beam CT. Springer Science & Business Media, 2008.[3] Brown R W, Haacke E M, Cheng Y C N, Thompson M R, Venkatesan R. Magnetic resonance imaging:physical principles and sequence design. John Wiley & Sons, 2014.[4] Choi J K, Park H S, Wang S, Wang Y, Seo J K. Inverse problem in quantitative susceptibility mapping[J]. SIAM J. Imaging Sci., 2014, 7(3):1669-1689.[5] Natterer F. Image reconstruction in quantitative susceptibility mapping[J]. SIAM J. Imaging Sci., 2016, 9(3):1127-1131.[6] de Rochefort L, Liu T, Kressler B, Liu J, Spincemaille P, Lebon V, Wu J, Wang Y. Quantitative susceptibility map reconstruction from mr phase data using bayesian regularization:validation and application to brain imaging[J]. Magn. Reson. Med., 2010, 63(1):194-206.[7] Wang Y, Liu T. Quantitative susceptibility mapping (qsm):decoding mri data for a tissue magnetic biomarker[J]. Magn. Reson. Med., 2015, 73(1):82-101.[8] Tikhonov A, Arsenin V, John F. Solutions of ill-posed problems, VH Winston Washington, DC, 1977.[9] Bell J B, Tikhonov A N, Arsenin V Y. Solutions of ill-posed problems[J]. Mathematics of Computation, 1977, 32(144):1320.[10] Gröchenig K. Foundations of time-frequency analysis, Birkhauser, 2001.[11] Daubechies I. Ten lectures on wavelets, Vol. CBMS-NSF Lecture Notes, SIAM, nr. 61, Society for Industrial and Applied Mathematics, 1992.[12] Mallat S. A wavelet tour of signal processing:the sparse way, Academic press, 2008.[13] Cai J, Osher S, Shen Z. Convergence of the linearized Bregman iteration for ?1-norm minimization[J]. Mathematics of Computation, 2009, 78:2127-2136.[14] Chan R, Chan T, Shen L, Shen Z. Wavelet algorithms for high-resolution image reconstruction[J]. SIAM Journal on Scientific Computing, 2003, 24(4):1408-1432.[15] Cai J, Osher S, Shen Z. Split Bregman methods and frame based image restoration[J]. Multiscale Modeling and Simulation:A SIAM Interdisciplinary Journal, 2009, 8(2):337-369.[16] Cai J, Osher S, Shen Z. Linearized Bregman iterations for frame-based image deblurring[J]. SIAM J. Imaging Sci, 2009, 2(1):226-252.[17] Zhang Y, Dong B, Lu Z. ?0 minimization of wavelet frame based image restoration[J]. Mathematics of Computation, 2013, 82:995-1015.[18] Dong B, Zhang Y. An efficient algorithm for ?0 minimization in wavelet frame based image restoration[J]. Journal of Scientific Computing, 2013, 54(2-3):350-368.[19] Liang J, Li J, Shen Z, Zhang X. Wavelet frame based color image demosaicing[J]. Inverse Problems and Imaging, 2013, 7(3):777-794.[20] Hou L, Ji H, Shen Z. Recovering over-/underexposed regions in photographs[J]. SIAM J. Imaging Sciences, 2013, 6(4):2213-2235.[21] Cai J, Ji H, Liu C, Shen Z. Blind motion deblurring using multiple images[J]. Journal of Computational Physics, 2009, 228(14):5057-5071.[22] Cai J, Ji H, Liu C, Shen Z. Blind motion deblurring from a single image using sparse approximation, in:Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, IEEE, 2009, 104-111.[23] Dong B, Ji H, Li J, Shen Z, Xu Y. Wavelet frame based blind image inpainting[J]. Applied and Computational Harmonic Analysis, 2012, 32(2):268-279.[24] Gong Z, Shen Z, Toh K C. Image restoration with mixed or unknown noises[J]. Multiscale Modeling & Simulation, 2014, 12(2):458-487.[25] Jia X, Dong B, Lou Y, Jiang S B. GPU-based iterative cone-beam CT reconstruction using tight frame regularization[J]. Physics In Medicine And Biology, 2011, 56(13):3787-3807.[26] Dong B, Li J, Shen Z, X-ray CT image reconstruction via wavelet frame based regularization and Radon domain inpainting[J]. Journal of Scientific Computing, 2013, 54(2-3):333-349.[27] Zhang H, Dong B, Liu B. A reweighted joint spatial-radon domain ct image reconstruction model for metal artifact reduction[J]. SIAM J. Imaging Sci. 2018, 11(1):707-733.[28] Gao H, Cai J F, Shen Z, Zhao H. Robust principal component analysis-based four-dimensional computed tomography[J]. Physics in medicine and biology, 2011, 56(11):3181.[29] Cai J, Jia X, Gao H, Jiang S, Shen Z, Zhao H. Cine cone beam ct reconstruction using low-rank matrix factorization:Algorithm and a proof-of-principle study[J]. IEEE transactions on medical imaging, 2014, 33(8):1581-1591.[30] Lustig M, Donoho D, Pauly J, Sparse MRI:The application of compressed sensing for rapid MR imaging[J]. Magnetic Resonance in Medicine, 2007, 58(6):1182-1195.[31] Lustig M, Donoho D L, Santos J M, Pauly J M. Compressed sensing mri[J]. IEEE signal processing magazine, 2008, 25(2):72.[32] Liu Y, Cai J F, Zhan Z, Guo D, Ye J, Chen Z, Qu X. Balanced sparse model for tight frames in compressed sensing magnetic resonance imaging[J]. PloS one, 2015, 10(4):e0119584.[33] Liu Y, Zhan Z, Cai J F, Guo D, Chen Z, Qu X. Projected iterative soft-thresholding algorithm for tight frames in compressed sensing magnetic resonance imaging[J]. IEEE transactions on medical imaging, 2016, 35(9):2130-2140.[34] Li M, Fan Z, Ji H, Shen Z. Wavelet frame based algorithm for 3d reconstruction in electron microscopy[J]. SIAM Journal on Scientific Computing, 2014, 36(1):B45-B69.[35] Sapiro G. Geometric partial differential equations and image analysis. Cambridge University Press, 2001.[36] Osher S, Fedkiw R. Level set methods and dynamic implicit surfaces. Vol. 153, Springer Science & Business Media, 2006.[37] Chan T F, Shen J. Image processing and analysis:variational, PDE, wavelet, and stochastic methods, SIAM, 2005.[38] Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physica D:Nonlinear Phenomena, 1992, 60(1-4):259-268.[39] Bredies K, Kunisch K, Pock T. Total Generalized Variation[J]. SIAM Journal on Imaging Sciences, 2010, 3:492.[40] Chambolle A, Lions P. Image recovery via total variation minimization and related problems[J]. Numerische Mathematik, 1997, 76(2):167-188.[41] Mumford D, Shah J. Optimal approximations by piecewise smooth functions and associated variational problems[J]. Communications on pure and applied mathematics, 1989, 42(5):577-685.[42] Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7):629-639.[43] Osher S, Rudin L. Feature-oriented image enhancement using shock filters[J]. SIAM Journal on Numerical Analysis, 1990, 27(4):919-940. http://www.jstor.org/stable/2157689[44] Bertalmio M, Bertozzi A L, Sapiro G. Navier-stokes, fluid dynamics, and image and video inpainting, in:Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on, Vol. 1, IEEE, 2001, I-I.[45] Steidl G, Weickert J, Brox T, Mrázek P, Welk M. On the equivalence of soft wavelet shrinkage, total variation diffusion, total variation regularization, and sides[J]. SIAM Journal on Numerical Analysis, 2004, 42(2):686-713.[46] Jiang Q. Correspondence between frame shrinkage and high-order nonlinear diffusion[J]. Applied Numerical Mathematics, 2012, 62(1):51-66.[47] Cai J, Dong B, Osher S, Shen Z. Image restorations:total variation, wavelet frames and beyond[J]. Journal of American Mathematical Society, 2012, 25(4):1033-1089.[48] Cai J, Dong B, Shen Z. Image restorations:a wavelet frame based model for piecewise smooth functions and beyond[J]. Applied and Computational Harmonic Analysis, 2016, 41(1):94-138.[49] Dong B, Shen Z, Xie P. Image restoration:a general wavelet frame based model and its asymptotic analysis[J]. SIAM Journal on Mathematical Analysis, 2017, 49(1):421-445.[50] Dong B, Jiang Q, Shen Z. Image restoration:wavelet frame shrinkage, nonlinear evolution PDEs, and beyond, Multiscale Modeling & Simulation:A SIAM Interdisciplinary Journal, 2017, 15(1):606-660.[51] Ulyanov D, Vedaldi A, Lempitsky V. Deep image prior, in:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, 9446-9454.[52] Hand P, Voroninski V. Global guarantees for enforcing deep generative priors by empirical risk, arXiv preprint arXiv:1705.07576.[53] Bora A, Jalal A, Price E, Dimakis A G. Compressed sensing using generative models, in:Proceedings of the 34th International Conference on Machine Learning-Volume 70, JMLR. org, 2017, 537-546.[54] Shah V, Hegde C. Solving linear inverse problems using gan priors:An algorithm with provable guarantees, in:2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2018, 4609-4613.[55] Kabkab M, Samangouei P, Chellappa R. Task-aware compressed sensing with generative adversarial networks, in:Thirty-Second AAAI Conference on Artificial Intelligence, 2018.[56] Gregor K, LeCun Y. Learning fast approximations of sparse coding, 2010, 399-406.[57] Chen Y, Yu W, Pock T. On learning optimized reaction diffusion processes for effective image restoration, in:CVPR, 2015, 5261-5269.[58] Sun J, Li H, Xu Z, et al., Deep admm-net for compressive sensing mri, in:NeurIPS, 2016, 10-18.[59] Engan K, Aase S O, Husoy J H. Method of optimal directions for frame design, in:Acoustics, Speech, and Signal Processing, 1999. Proceedings., 1999 IEEE International Conference on, Vol. 5, IEEE, 1999, 2443-2446.[60] Aharon M, Elad M, Bruckstein A, et al., K-svd:An algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Trans. Signal Process., 2006, 54(11):4311.[61] Cai J F, Ji H, Shen Z, Ye G B. Data-driven tight frame construction and image denoising[J]. Applied and Computational Harmonic Analysis, 2014, 37(1):89-105.[62] Tai C, Weinan E. Multiscale adaptive representation of signals:I. the basic framework[J]. J. Mach. Learn. Res., 2016, 17(1):4875-4912.[63] Ron A, Shen Z. Affine systems in L2(Rd):The analysis of the analysis operator[J]. Journal of Functional Analysis, 1997, 148(2):408-447.[64] Ron A, Shen Z. Affine systems in L2(Rd) II:dual systems[J]. Journal of Fourier Analysis and Applications, 1997, 3(5):617-638.[65] Daubechies I, Han B, Ron A, Shen Z. Framelets:MRA-based constructions of wavelet frames[J]. Applied and Computational Harmonic Analysis, 2003, 14(1):1-46. doi:10.1016/S1063-5203(02)00511-0.[66] Shen Z. Wavelet frames and image restorations[J]. in:Proceedings of the International Congress of Mathematicians, 2010, (4):2834-2863.[67] Dong B, Shen Z. MRA-Based Wavelet Frames and Applications, IAS Lecture Notes Series, Summer Program on "The Mathematics of Image Processing", Park City Mathematics Institute.[68] Ron A, Shen Z. Generalized shift-invariant systems[J]. Constructive Approximation, 2005, 22(1):1-45.[69] Ron A, Shen Z. Weyl-Heisenberg frames and Riesz bases in L2(Rd)[J]. Duke Mathematical Journal, 1997, 89(2):237-282.[70] Ron A, Shen Z. Frames and Stable Bases for Shift-Invariant Subspaces of L2(Rd)[J]. Canadian Journal of Mathematics, 1995, 47(5):1051-1094.[71] Bertalmio M, Sapiro G, Caselles V, Ballester C. Image inpainting, in:Proceedings of the 27th annual conference on Computer graphics and interactive techniques, ACM Press/Addison-Wesley Publishing Co., 2000, 417-424.[72] Chan T, Shen J. Variational image inpainting[J]. Commun. Pure Appl. Math, 2005, 58:579-619.[73] Cai J, Chan R, Shen Z. A framelet-based image inpainting algorithm[J]. Applied and Computational Harmonic Analysis, 2008, 24(2):131-149.[74] Tseng P. Applications of a splitting algorithm to decomposition in convex programming and variational inequalities[J]. SIAM Journal on Control and Optimization, 1991, 29(1):119-138.[75] Chen G H, Rockafellar R. Convergence rates in forward-backward splitting[J]. SIAM Journal on Optimization, 1997, 7(2):421-444.[76] Combettes* P L. Solving monotone inclusions via compositions of nonexpansive averaged operators[J]. Optimization, 2004, 53(5-6):475-504.[77] Combettes P, Wajs V. Signal recovery by proximal forward-backward splitting[J]. Multiscale Modeling and Simulation, 2006, 4(4):1168-1200.[78] Hale E, Yin W, Zhang Y. A fixed-point continuation method for ?1-regularization with application to compressed sensing, CAAM Technical Report TR, Rice University, Houston, TX (2007) 07-07CAAM Technical Report TR07-07, Rice University, Houston, TX.[79] Bredies K. A forward-backward splitting algorithm for the minimization of non-smooth convex functionals in banach space[J]. Inverse Problems, 2009, 25(1):015005.[80] Cai J, Chan R, Shen L, Shen Z. Convergence analysis of tight framelet approach for missing data recovery[J]. Advances in Computational Mathematics, 2009, 31(1):87-113.[81] Cai J, Chan R, Shen Z. Simultaneous cartoon and texture inpainting[J]. Inverse Problems and Imaging (IPI), 2010, 4(3), 379-395.[82] Cai J, Shen Z. Framelet based deconvolution[J]. J. Comp. Math., 2010, 28(3):289-308.[83] Daubechies I, Teschke G, Vese L. Iteratively solving linear inverse problems under general convex constraints[J]. Inverse Problems and Imaging, 2007, 1(1):29.[84] Fadili M, Starck J. Sparse representations and Bayesian image inpainting. Proc. SPARS 5.[85] Fadili M, Starck J, Murtagh F. Inpainting and zooming using sparse representations[J]. The Computer Journal, 2009, 52(1):64.[86] Figueiredo M, Nowak R, An EM algorithm for wavelet-based image restoration[J]. IEEE Transactions on Image Processing, 2003, 12(8):906-916.[87] Figueiredo M, Nowak R. A bound optimization approach to wavelet-based image deconvolution, in:Image Processing, 2005. ICIP 2005. IEEE International Conference on, Vol. 2, IEEE, 2005, pp. II-782.[88] Elad M, Starck J, Querre P, Donoho D. Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA)[J]. Applied and Computational Harmonic Analysis, 2005, 19(3):340-358.[89] Starck J, Elad M, Donoho D. Image decomposition via the combination of sparse representations and a variational approach[J]. IEEE transactions on image processing, 2005, 14(10):1570-1582.[90] Bruck Jr R E. On the weak convergence of an ergodic iteration for the solution of variational inequalities for monotone operators in hilbert space[J]. J. Math. Anal. Appl., 1977, 61(1):159-164.[91] Passty G B. Ergodic convergence to a zero of the sum of monotone operators in hilbert space[J]. J. Math. Anal. Appl., 1979, 72:383-290.[92] Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(1):183-202.[93] Shen Z, Toh K C, Yun S. An accelerated proximal gradient algorithm for frame-based image restoration via the balanced approach[J]. SIAM Journal on Imaging Sciences, 2011, 4(2):573-596.[94] Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends® in Machine Learning, 2011, 3(1):1-122.[95] Gabay D, Mercier B. A dual algorithm for the solution of nonlinear variational problems via finite element approximation[J]. Comput. Math. Appl., 1976, 2(1):17-40.[96] Glowinski R, Marroco A. Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de dirichlet non linéaires, Revue française d'automatique, informatique, recherche opérationnelle. Analyse numérique, 1975, 9(R2), 41-76.[97] Goldstein T, Osher S. The split bregman method for l1-regularized problems[J]. SIAM J. Imaging Sci., 2009, 2(2):323-343.[98] Zhu M, Chan T. An efficient primal-dual hybrid gradient algorithm for total variation image restoration. UCLA CAM Report 34.[99] Esser E, Zhang X, Chan T F. A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science[J]. SIAM J. Imaging Sci., 2010, 3(4):1015-1046.[100] Chambolle A, Pock T. A first-order primal-dual algorithm for convex problems with applications to imaging[J]. J. Math. Imaging Vis., 2011, 40(1):120-145.[101] J. Nocedal, S. J. Wright, Numerical Optimization, 2nd Edition, Springer, 2006.[102] Aubert G, Kornprobst P. Mathematical problems in image processing:partial differential equations and the calculus of variations. Springer, 2006.[103] Chan T, Shen J. Image processing and analysis:variational, PDE, wavelet, and stochastic methods, Society for Industrial Mathematics, 2005.[104] Weickert J. Coherence-enhancing diffusion filtering[J]. International Journal of Computer Vision, 1999, 31(2):111-127.[105] Weickert J. Anisotropic diffusion in image processing, Vol. 1, Teubner Stuttgart, 1998.[106] Weickert J. Theoretical foundations of anisotropic diffusion in image processing[J]. ComputingWien-Supplements, 1996, 11:221-236.[107] Alvarez L, Guichard F, Lions P, Morel J. Axioms and fundamental equations of image processing[J]. Archive for Rational Mechanics and Analysis, 1993, 123(3):199-257.[108] Catté F, Lions P L, Morel J M, Coll T. Image selective smoothing and edge detection by nonlinear diffusion[J]. SIAM Journal on Numerical analysis, 1992, 29(1):182-193.[109] Coifman R, Donoho D. Translation-invariant de-noising[J]. Wavelets and statistics, 1995, 103:125.[110] Daubechies I, Defrise M, De Mol C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[J]. Communications on pure and applied mathematics, 2004, 57(11):1413-1457.[111] Long Z, Lu Y, Ma X, Dong B. Pde-net:Learning PDEs from data, in:International Conference on Machine Learning, 2018, 3214-3222.[112] Long Z, Lu Y, Dong B. Pde-net 2.0:Learning PDEs from data with a numeric-symbolic hybrid deep network, Journal of Computational Physics, 2019, 108925.[113] Choi J K, Dong B, Zhang X. An edge driven wavelet frame model for image restoration, arXiv preprint arXiv:1701.07158.[114] Braides A. Gamma-Convergence for Beginners. Vol. 22, Oxford University Press, 2002.[115] Chan T, Shen J, Zhou H. Total variation wavelet inpainting[J]. Journal of Mathematical Imaging and Vision, 2006, 25(1):107-125.[116] Dong B, Chien A, Shen Z. Frame based segmentation for medical images[J]. Communications in Mathematical Sciences, 2010, 9(2):551-559.[117] Jia X, Dong B, Lou Y, Jiang S. GPU-based iterative cone-beam CT reconstruction using tight frame regularization[J]. Physics in Medicine and Biology, 2011, 56:3787-3807.[118] Tai C, Zhang X, Shen Z. Wavelet frame based multiphase image segmentation[J]. SIAM Journal on Imaging Sciences, 2013, 6(4):2521-2546.[119] Dong B, Shen Z. Frame based surface reconstruction from unorganized points[J]. Journal of Computational Physics, 2011, 230:8247-8255.[120] Dong B. Sparse representation on graphs by tight wavelet frames and applications[J]. Applied and Computational Harmonic Analysis, 2017, 42(3):452-479.[121] Mrázek P, Weickert J. From two-dimensional nonlinear diffusion to coupled haar wavelet shrinkage[J]. Journal of Visual Communication and Image Representation, 2007, 18(2):162-175.[122] Mrázek R, Weickert J, Steidl G. Correspondences between wavelet shrinkage and nonlinear diffusion. in:Scale Space Methods in Computer Vision, Springer, 2003, 101-116.[123] Nesterov Y. On an approach to the construction of optimal methods for minimizing smooth convex functions[J]. Ehkon. Mat. Metody, 1988, 24(3):509-517.[124] Nesterov Y. A method of solving a convex programming problem with convergence rate O(1/k2)[J]. in:Soviet Mathematics Doklady, 1983, 27(2):372-376.[125] Mao Y, Osher S, Dong B. A nonlinear PDE-based method for sparse deconvolution. Multiscale Modeling and Simulation, 8(3).[126] Su W, Boyd S, Candes E J. A differential equation for modeling nesterov's accelerated gradient method:theory and insights[J]. Journal of Machine Learning Research, 2016, 17(153):1-43.[127] Lu Y, Zhong A, Li Q, Dong B. Beyond finite layer neural networks:Bridging deep architectures and numerical differential equations. in:International Conference on Machine Learning, 2018, 3276-3285.[128] Chen X, Liu J, Wang Z, Yin W. Theoretical linear convergence of unfolded ista and its practical weights and thresholds. in:NeurIPS, 2018, 9079-9089.[129] Liu J, Chen X, Wang Z, Yin W. Alista:Analytic weights are as good as learned weights in lista. in:ICLR, 2019.[130] yang Y, Sun J, Li H, Xu Z. Deep admm-net for compressive sensing mri, in:D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, R. Garnett (Eds.), Advances in Neural Information Processing Systems 29, Curran Associates, Inc., 2016, 10-18.[131] Zhang H, Dong B, Liu B. Jsr-net:A deep network for joint spatial-radon domain ct reconstruction from incomplete data, in:IEEE International Conference on Acoustics. Speech and Signal Processing (ICASSP)-2019, 2019, 3657-3661. doi:10.1109/ICASSP.2019.8682178.[132] Adler J, Öktem O. Learned primal-dual reconstruction[J]. IEEE Trans. Med. Imaging, 2018, 37(6):1322-1332.[133] Li H, Yang Y, Chen D, Lin Z. Optimization algorithm inspired deep neural network structure design, in:J. Zhu, I. Takeuchi (Eds.), Proceedings of The 10th Asian Conference on Machine Learning, Vol. 95 of Proceedings of Machine Learning Research, PMLR, 2018, 614-629.[134] Zhang X, Lu Y, Liu J, Dong B. Dynamically unfolding recurrent restorer:A moving endpoint control method for image restoration, in:ICLR, 2019.[135] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. in:CVPR, 2016, 770-778.[136] He K, Zhang X, Ren S, Sun J. Identity mappings in deep residual networks. in:ECCV, 2016, 630-645.[137] Weinan E. A proposal on machine learning via dynamical systems[J]. Communications in Mathematics and Statistics, 2017, 5(1):1-11.[138] Haber E, Ruthotto L. Stable architectures for deep neural networks[J]. Inverse Problems, 2017, 34(1):014004.[139] Chen T Q, Rubanova Y, Bettencourt J, Duvenaud D K. Neural ordinary differential equations. in:Advances in neural information processing systems, 2018, 6571-6583.[140] Wang B, Yuan B, Shi Z, Osher S J. Enresnet:Resnet ensemble via the feynman-kac formalism, arXiv preprint arXiv:1811.10745.[141] Zhang D, Zhang T, Lu Y, Zhu Z, Dong B. You only propagate once:Painless adversarial training using maximal principle, in:NeurIPS, 2019.[142] Lu Y, Li Z, He D, Sun Z, Dong B, Qin T, Wang L, Liu T Y. Understanding and improving transformer from a multi-particle dynamic system point of view, arXiv preprint arXiv:1906.02762.[143] Yang Y, Sun J, Li H, Xu Z. Admm-csnet:A deep learning approach for image compressive sensing. IEEE transactions on pattern analysis and machine intelligence.[144] Xu Z, Sun J. Model-driven deep-learning[J]. National Science Review, 2017, 5(1):22-24.[145] Parikh N, Boyd S, et al., Proximal algorithms[J]. Foundations and Trends R in Optimization, 2014, 1(3):127-239.[146] Katsevich A. Theoretically exact filtered backprojection-type inversion algorithm for spiral ct[J]. SIAM Journal on Applied Mathematics, 2002, 62(6):2012-2026.[147] Adler J, Öktem O, Solving ill-posed inverse problems using iterative deep neural networks. Inverse Probl. 33(2017) 124007(24pp). |