删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

p-adic 超几何函数与 Dwork超曲面上的有理点

本站小编 Free考研考试/2021-12-27

p-adic 超几何函数与 Dwork超曲面上的有理点 曹茹月, 方程成, 曹炜宁波大学数学与统计学院 宁波 315211 p-adic Hypergeometric Functions and Rational Points on Dwork Hypersurfaces Ru Yue CAO, Cheng Cheng FANG, Wei CAOSchool of Mathematics and Statistics, Ningbo University, Ningbo 315211, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(458 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要p-adic超几何函数是经典的Gauss超几何函数在有限域上的模拟,与许多数论问题都有联系.设Fqq元有限域,λ∈Fqn为正整数.本文研究了Dwork超曲面Dλnx1n+x2n+…+xnn=x1x2xn及其推广形式上的Fq-有理点,并在nqq-1)互素时给出了由p-adic超几何函数表示的各种Fq-有理点个数的公式,从而修正和改进了Barman与Goodson等人的结论.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-07-17
MR (2010):O156.2
基金资助:国家自然科学基金资助项目(11871291);宁波市自然科学基金资助项目(2019A610035)
作者简介: 曹茹月,E-mail:1586579618@qq.com;方程成,E-mail:71804461@qq.com;曹炜,E-mail:caowei@nbu.edu.cn
引用本文:
曹茹月, 方程成, 曹炜. p-adic 超几何函数与 Dwork超曲面上的有理点[J]. 数学学报, 2020, 63(3): 253-260. Ru Yue CAO, Cheng Cheng FANG, Wei CAO. p-adic Hypergeometric Functions and Rational Points on Dwork Hypersurfaces. Acta Mathematica Sinica, Chinese Series, 2020, 63(3): 253-260.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2020/V63/I3/253


[1] Ahlgren S., Ono K., A Gaussian hypergeometric series evaluation and Apéry number congruences, J. Reine Angew. Math., 2000, 518:187-212.
[2] Barman R., Rahman H., Saikia N., Counting points on Dwork hypersurfaces and p-adic hypergeometric functions, Bull. Aust. Math. Soc., 2016, 94:208-216.
[3] Barman R., Saikia N., McCarthy D., Summation identities and special values of hypergeometric series in the p-adic setting, J. Number Theory, 2015, 153:63-84.
[4] Berndt B. C., Evans R. J., Williams K. S., Gauss and Jacobi Sums, Wiley-Interscience, New York, 1998.
[5] Chen J. M., Cao W., Smith normal form of augmented degree matrix and rational points on toric hypersurface, Algebra Colloquium, 2013, 20:327-332.
[6] Dwork B., On the rationality of the zeta function of an algebraic variety, Amer. J. Math., 1960, 82:631-648.
[7] Dwork B., On the zeta function of a hypersurface, Publ Math. IHES., 1962, 12:5-68.
[8] Dwork B., p-adic Cycles, Publ Math. IHES., 1969, 37:27-115.
[9] Fuselier J., Hypergeometric functions over Fp and relations to elliptic curves and modular forms, Proc. Amer. Math. Soc., 2010, 138:109-123.
[10] Goodson H., Hypergeometric functions and relations to Dwork hypersurfaces, Int. J. Number Theory, 2017, 13:439-485.
[11] Greene J., Hypergeometric functions over finite fields, Trans. Amer. Math. Soc., 1987, 301:77-101.
[12] Greene J., Hypergeometric functions over finite fields and representations of SL(2; q), Rocky Mountain J. Math., 1993, 23:547-568.
[13] Gross B. H., Koblitz N., Gauss sums and the p-adic Γ-function, Ann. Math., 1979, 109(2):569-581.
[14] Harris M., Shepherd-Barron N., Taylor R., A family of Calabi-Yau varieties and potential automorphy, Ann. Math., 2010, 171:779-813.
[15] Hong S. F., L-functions of twisted diagonal exponential sums over finite fields, Proc. Amer. Math. Soc., 2007, 135:3099-3108.
[16] Ireland K., Rosen M., A Classical Introduction to Modern Number Theory, GTM 84, Springer-Verlag, New York, 1982.
[17] Katz N. M., Exponential Sums and Differential Equations, Princeton Univ. Press, Princeton, 1990.
[18] Koblitz N., p-adic Numbers, p-adic Analysis and Zeta Functions, GTM 58, Springer-Verlag, New York, 1996.
[19] Lidl R., Niederreiter H., Finite Fields, Cambridge Univ. Press, Cambridge, 1997.
[20] Lennon C., Gaussian hypergeometric evaluations of traces of Frobenius for elliptic curves, Proc. Amer. Math. Soc., 2011, 139:1931-1938.
[21] McCarthy D., Extending Gaussian hypergeometric series to the p-adic setting, Int. J. Number Theory, 2012, 8:1581-1612.
[22] McCarthy D., On a supercongruence conjecture of Rodriguez-Villegas, Proc. Amer. Math. Soc., 2012, 140:2241-2254.
[23] McCarthy D., Transformations of well-poised hypergeometric functions over finite fields, Finite Fields Appl., 2012, 18:1133-1147.
[24] McCarthy D., The trace of Frobenius of elliptic curves and the p-adic gamma function, Pacific J. Math., 2013, 261:219-236.
[25] Robert A. M., A Course in p-adic Analysis, GTM 198, Springer-Verlag, New York, 2000.
[26] Wang R. Y., Wen B. B., Cao W., Degree matrices and enumeration of rational points of some hypersurfaces over finite fields, J. Number Theory, 2017, 177:91-99.
[27] Yu Y. D., Variation of the unit root along the Dwork family of Calabi-Yau varieties, Math. Ann., 2009, 343:53-78.

[1]吕星星. 三次Gauss和及二项指数和的混合均值[J]. 数学学报, 2019, 62(2): 225-232.
[2]刘宝利, 申诗萌. 两个不同Gauss和的混合均值[J]. 数学学报, 2019, 62(2): 255-260.
[3]杜先存, 李小雪. 广义四次Gauss和的四次均值[J]. 数学学报, 2018, 61(4): 541-548.
[4]付瑞琴, 杨海. 一个特殊的Gauss和以及它的上界估计[J]. Acta Mathematica Sinica, English Series, 2014, 57(6): 1141-1146.
[5]李江华, 刘燕妮. Gauss和与广义Kloosterman和的几个新的恒等式[J]. Acta Mathematica Sinica, English Series, 2013, 56(3): 413-418.
[6]郑志勇. 关于 L(s,x)的渐近函数方程[J]. Acta Mathematica Sinica, English Series, 1993, 36(5): 669-675.
[7]王军. 有限域中的第二型本原根的阶及其范数[J]. Acta Mathematica Sinica, English Series, 1991, 34(1): 1-6.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23599
相关话题/数学 宁波大学 统计学院 函数 几何