摘要对于给定的两个正整数n ≥ 2和m ≥ 1,假设函数f满足如下条件:(1)在Bn内满足非齐次双调和方程△(△f)=g(g ∈ C(Bn,Rm));(2)在Sn-1上满足f=ψ1(ψ1 ∈ C(Sn-1,Rm)),以及∂f/∂n=ψ2(ψ2 ∈ C(Sn-1,Rm)),其中∂/∂n表示内法线方向导数,Bn表示Rn中的单位球以及Sn-1表示Bn的边界.本文主要研究f的连续模和Heinz-Schwarz型不等式. | | 服务 | | | 加入引用管理器 | | E-mail Alert | | RSS | 收稿日期: 2019-09-19 | | 基金资助:湖南省教育厅优秀青年基金项目(18B365);湖南省科技计划项目(2016TP1020);湖南省高等学校双一流应用特色学科"数学"(湘教通[2018]469);衡阳市科技计划项目(2018KJ125)
| 作者简介: 陈少林,E-mail:mathechen@126.com |
[1] Arsenovi? M., Koji? V., Mateljevi? M., On Lipschitz continuity of harmonic quasiregular maps on the unit ball in Rn, Ann. Acad. Sci. Fenn. Math., 2008, 33:315-318. [2] Axler S., Bourdon P., Ramey W., Harmonic Function Theory, Springer-Verlag, New York, 1992. [3] Beardon A. F., The Geometry of Discrete Groups, Springer-Verlag, New York, 1983. [4] Chen J., Huang M., Rasila A., et al., On Lipschitz continuity of solutions of hyperbolic Poisson's equation, Calc. Var. Partial. Differ. Equ., 2018, 57:1-32. [5] Chen S., Li P. J., Wang X. T., Schwarz-type lemma, Landau-type theorem, and Lipschitz-type space of solutions to inhomogeneous biharmonic equations, J. Geom. Anal., 2019, 29:2469-2491. [6] Chen S., Zhu J. F., Schwarz type lemmas and a Landau type theorem of functions satisfying the biharmonic equation, Bull. Sci. Math., 2019, 154:36-63. [7] Dyakonov K. M., Equivalent norms on Lipschitz-type spaces of holomorphic functions, Acta Math., 1997, 178:143-167. [8] Dyakonov K. M., Holomorphic functions and quasiconformal mappings with smooth moduli, Adv. Math., 2004, 187:146-172. [9] Gasper G., Rahman M., Basic Hypergeometric Series, Cambridge Univ. Press, Cambridge, 2004. [10] Gazzola F., Grunau H. C., Sweer G., Polyharmonic Boundary Value Problems, Lecture Notes in Mathematics, 1991, Springer-Verlag, Berlin, 2010. [11] Grunau H. C., Sweers G., Positivity for equations involving polyharmonic operators with Dirichlet boundary conditions, Math. Ann., 1997, 307:389-626. [12] Gudmundsson S., Montaldo S., Ratto A., Biharmonic functions on the classical compact simple Lie groups, J. Geom. Anal., 2018, 28:1525-1547. [13] Hayek S. I., Advanced Mathematical Methods in Science and Engineering, Marcel Dekker, 2000. [14] Heinz E., On one-to-one harmonic mappings, Pacific J. Math., 1959, 9:101-105. [15] Hethcote H. W., Schwarz lemma analogues for harmonic functions, Int. J. Math. Educ. Sci. Technol., 1977, 8:65-67. [16] Kalaj D., Pavlovi? M., On quasiconformal self-mappings of the unit disk satisfying Poisson's equation, Trans. Amer. Math. Soc., 2011, 363:4043-4061. [17] Kalaj D., Vujadinovi? D., The gradient of a solution of the Poisson equation in the unit ball and related operators, Canad. Math. Bull., 2017, 60:536-545. [18] Kalaj D., Heinz-Schwarz inequalities for harmonic mappings in the unit ball, Ann. Acad. Sci. Fenn. Math., 2016, 41:457-464. [19] Kalaj D. A priori estimate of gradient of a solution of a certain differential inequality and quasiconformal mappings, J. Anal. Math., 2013, 119:63-88. [20] Kalaj D., On the quasiconformal self-mappings of the unit ball satisfying the Poisson differential equations, Ann. Acad. Sci. Fenn. Math., 2011, 36:177-194. [21] Khuri S. A., Biorthogonal series solution of Stokes flow problems in sectorial regions, SIAM J. Appl. Math., 1996, 56:19-39. [22] Li P., Ponnusamy S., Presentation formula and bi-Lipschitz continuity of solutions to inhomogeneous biharmonic Dirichlet problems in the unit disk, J. Math. Anal. Appl., 2017, 456:1150-1175. [23] Pavlovi? M., Introduction to Function Spaces on the Disk, Matemati?ki institut SANU, Belgrade, 2004. [24] Pavlovi? M., On K. M., Dyakonov's paper:Equivalent norms on Lipschitz-type spaces of holomorphic functions, Acta Math., 1999, 183:141-143. [25] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integrals and Series, Elementary Functions, 1, Gordon and Breach, New York, 1986. [26] Strzelechi P., On biharmonic maps and their generalizations, Calc. Var. Partial. Differ. Equ., 2003, 18:401-432. [27] Selvadurai A. P. S., Partial Differential Equations in Mechanics 2:The Biharmonic Equation, Poisson's Equation, Springer-Verlag, Berlin, 2000. [28] Weisstein E. W., CRC Concise Encyclopedia of Mathematics, CRC Press, 2002. [29] Zygmund A., Trigonometrical Series, Chelsea Publishing Co., 2nd edition, New York, 1952.
|
[1] | 王晟. 球面Sd-1上的广义Ul'yanov型不等式[J]. Acta Mathematica Sinica, English Series, 2011, 54(1): 115-124. | [2] | 李宏亮, 徐罕. 加权Lorentz空间上的连续模和Gagliardo--Nirenberg型不等式[J]. Acta Mathematica Sinica, English Series, 2010, 53(6): 1225-1238. | [3] | 邢富冲;. Bergman空间B_q~p(p>0,q>1)中的多项式最佳逼近的逆定理[J]. Acta Mathematica Sinica, English Series, 2006, 49(3): 519-524. | [4] | 邢富冲;. Bergman空间B_q~p(p>0,q>1)中的Bernstein型不等式[J]. Acta Mathematica Sinica, English Series, 2006, 49(2): 431-434. | [5] | 邢富冲;. Bergman空间B_q~p(01)中的Hardy-Littlewood逆定理[J]. Acta Mathematica Sinica, English Series, 2006, 49(1): 105-114. | [6] | 曹飞龙. 多元Stancu多项式与连续模[J]. Acta Mathematica Sinica, English Series, 2005, 48(1): 51-62. | [7] | 危启才. 大偏差与l~p-值Wiener过程在Hlder范数下的泛函连续模[J]. Acta Mathematica Sinica, English Series, 2003, 46(4): 697-708. | [8] | 郭顺生;刘喜武. 关于函数及其导数用Bernstein-Durrmeyer算子的同时逼近[J]. Acta Mathematica Sinica, English Series, 2000, 43(2): 367-374. | [9] | 刘京军. 布朗运动在(r,p)-容度意义下的连续模的泛函形式[J]. Acta Mathematica Sinica, English Series, 1999, 42(6): 0-0+0. | [10] | 房艮孙. 周期可微函数类上的最优求积公式[J]. Acta Mathematica Sinica, English Series, 1993, 36(4): 563-570. | [11] | 郭顺生. W~1H_c~ω的一类宽度[J]. Acta Mathematica Sinica, English Series, 1993, 36(3): 374-381. | [12] | 谢庭藩. 单边条件下Fourier和的逼近[J]. Acta Mathematica Sinica, English Series, 1986, 29(4): 481-489. | [13] | 李武. 关于代数多项式逼近的Тиман型定理[J]. Acta Mathematica Sinica, English Series, 1986, 29(4): 544-549. | [14] | 卢志康. 关于Fourier级数的收敛和求和[J]. Acta Mathematica Sinica, English Series, 1986, 29(3): 378-384. | [15] | 孙燮华. 关于连续函数用有理插值算子的逼近[J]. Acta Mathematica Sinica, English Series, 1986, 29(2): 195-206. |
|
PDF全文下载地址:
http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23636
TVS-锥度量空间中的统计收敛林艳芳,鲍玲鑫福建农林大学计算机与信息学院福州350002StatisticalConvergenceinTVS-coneMetricSpacesYanFangLIN,LingXinBAOSchoolofComputerandInformation,FujianAgri ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27-BiHom-Jordan-李超代数的表示郭双建贵州财经大学数学统计学院贵阳550025Representationsof-BiHom-Jordan-LieSuperalgebrasShuangJianGUOSchoolofMathematicsandStatistics ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27广义n-赋范空间中的Vogt定理马玉梅大连民族大学理学院大连116600TheVogtTheoreminG-n-normedSpacesYuMeiMASchoolofScience,DalianMinzuUniversity,Dalian116600,P.R.China摘要图/表参考文献相关文章全文 ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27因子vonNeumann代数上的非线性混合-Jordan三重可导映射宁彤,张建华陕西师范大学数学与信息科学学院西安710062NonlinearMixed-JordanTripleDerivableMapsonFactorvonNeumannAlgebrasTongNING,Jian ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27vonNeumann代数上的局部可乘Lien-导子齐霄霏,冯小雪山西大学数学科学学院太原030006LocalMultiplicativeLien-derivationsonvonNeumannAlgebrasXiaoFeiQI,XiaoXueFENGSchoolofMathematicalScie ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Sobolev空间中非电阻MHD方程局部适定性李亚涛中国工程物理研究院研究生院北京100088LocalWell-posednessfortheNon-resistiveMHDEquationsinSobolevSpacesYaTaoLITheGraduateSchoolofChinaAcademy ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27一些算子的交换子在广义Morrey空间上的紧性郭庆栋,周疆新疆大学数学与系统科学学院乌鲁木齐830046CompactnessofCommutatorsforSomeOperatorsonGeneralizedMorreySpacesQingDongGUO,JiangZHOUCollegeofMat ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27李代数W(2,2)上的Hom-李代数结构陈海波1,赖丹丹2,刘东21上海立信会计金融学院统计与数学学院上海201620;2湖州师范学院理学院湖州313000TheHom-LieStructureontheLieAlgebraW(2,2)HaiBoCHEN1,DanDanLAI2,DongLIU21S ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27三角代数上Jordan积为幂等元处的高阶-Lie可导映射张霞,张建华陕西师范大学数学与信息科学学院西安710062Higher-LieDerivableMapsonTriangularAlgebrasbyJordanProductIdempotentsXiaZHANG,JianHua ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27离散时间Markov链几何非常返与代数非常返的判别准则宋延红中南财经政法大学统计与数学学院武汉430073CriteriaforGeometricandAlgebraicTransienceforDiscrete-timeMarkovChainsYanHongSONGSchoolofStatisti ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|