删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

与双调和方程相关的连续模和Heinz-Schwarz型不等式

本站小编 Free考研考试/2021-12-27

与双调和方程相关的连续模和Heinz-Schwarz型不等式 陈少林衡阳师范学院数学与统计学院 衡阳 421008 Modulus of Continuity and Heinz-Schwarz Type Inequalities of Solutions to Biharmonic Equations Shao Lin CHENCollege of Mathematics and Statistics, Hengyang Normal University, Hengyang 421008, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(598 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要对于给定的两个正整数n ≥ 2和m ≥ 1,假设函数f满足如下条件:(1)在Bn内满足非齐次双调和方程△(△f)=ggC(Bn,Rm));(2)在Sn-1上满足f=ψ1ψ1C(Sn-1,Rm)),以及∂f/∂n=ψ2ψ2C(Sn-1,Rm)),其中∂/∂n表示内法线方向导数,Bn表示Rn中的单位球以及Sn-1表示Bn的边界.本文主要研究f的连续模和Heinz-Schwarz型不等式.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-09-19
MR (2010):O177.2
基金资助:湖南省教育厅优秀青年基金项目(18B365);湖南省科技计划项目(2016TP1020);湖南省高等学校双一流应用特色学科"数学"(湘教通[2018]469);衡阳市科技计划项目(2018KJ125)
作者简介: 陈少林,E-mail:mathechen@126.com
引用本文:
陈少林. 与双调和方程相关的连续模和Heinz-Schwarz型不等式[J]. 数学学报, 2020, 63(5): 505-522. Shao Lin CHEN. Modulus of Continuity and Heinz-Schwarz Type Inequalities of Solutions to Biharmonic Equations. Acta Mathematica Sinica, Chinese Series, 2020, 63(5): 505-522.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2020/V63/I5/505


[1] Arsenovi? M., Koji? V., Mateljevi? M., On Lipschitz continuity of harmonic quasiregular maps on the unit ball in Rn, Ann. Acad. Sci. Fenn. Math., 2008, 33:315-318.
[2] Axler S., Bourdon P., Ramey W., Harmonic Function Theory, Springer-Verlag, New York, 1992.
[3] Beardon A. F., The Geometry of Discrete Groups, Springer-Verlag, New York, 1983.
[4] Chen J., Huang M., Rasila A., et al., On Lipschitz continuity of solutions of hyperbolic Poisson's equation, Calc. Var. Partial. Differ. Equ., 2018, 57:1-32.
[5] Chen S., Li P. J., Wang X. T., Schwarz-type lemma, Landau-type theorem, and Lipschitz-type space of solutions to inhomogeneous biharmonic equations, J. Geom. Anal., 2019, 29:2469-2491.
[6] Chen S., Zhu J. F., Schwarz type lemmas and a Landau type theorem of functions satisfying the biharmonic equation, Bull. Sci. Math., 2019, 154:36-63.
[7] Dyakonov K. M., Equivalent norms on Lipschitz-type spaces of holomorphic functions, Acta Math., 1997, 178:143-167.
[8] Dyakonov K. M., Holomorphic functions and quasiconformal mappings with smooth moduli, Adv. Math., 2004, 187:146-172.
[9] Gasper G., Rahman M., Basic Hypergeometric Series, Cambridge Univ. Press, Cambridge, 2004.
[10] Gazzola F., Grunau H. C., Sweer G., Polyharmonic Boundary Value Problems, Lecture Notes in Mathematics, 1991, Springer-Verlag, Berlin, 2010.
[11] Grunau H. C., Sweers G., Positivity for equations involving polyharmonic operators with Dirichlet boundary conditions, Math. Ann., 1997, 307:389-626.
[12] Gudmundsson S., Montaldo S., Ratto A., Biharmonic functions on the classical compact simple Lie groups, J. Geom. Anal., 2018, 28:1525-1547.
[13] Hayek S. I., Advanced Mathematical Methods in Science and Engineering, Marcel Dekker, 2000.
[14] Heinz E., On one-to-one harmonic mappings, Pacific J. Math., 1959, 9:101-105.
[15] Hethcote H. W., Schwarz lemma analogues for harmonic functions, Int. J. Math. Educ. Sci. Technol., 1977, 8:65-67.
[16] Kalaj D., Pavlovi? M., On quasiconformal self-mappings of the unit disk satisfying Poisson's equation, Trans. Amer. Math. Soc., 2011, 363:4043-4061.
[17] Kalaj D., Vujadinovi? D., The gradient of a solution of the Poisson equation in the unit ball and related operators, Canad. Math. Bull., 2017, 60:536-545.
[18] Kalaj D., Heinz-Schwarz inequalities for harmonic mappings in the unit ball, Ann. Acad. Sci. Fenn. Math., 2016, 41:457-464.
[19] Kalaj D. A priori estimate of gradient of a solution of a certain differential inequality and quasiconformal mappings, J. Anal. Math., 2013, 119:63-88.
[20] Kalaj D., On the quasiconformal self-mappings of the unit ball satisfying the Poisson differential equations, Ann. Acad. Sci. Fenn. Math., 2011, 36:177-194.
[21] Khuri S. A., Biorthogonal series solution of Stokes flow problems in sectorial regions, SIAM J. Appl. Math., 1996, 56:19-39.
[22] Li P., Ponnusamy S., Presentation formula and bi-Lipschitz continuity of solutions to inhomogeneous biharmonic Dirichlet problems in the unit disk, J. Math. Anal. Appl., 2017, 456:1150-1175.
[23] Pavlovi? M., Introduction to Function Spaces on the Disk, Matemati?ki institut SANU, Belgrade, 2004.
[24] Pavlovi? M., On K. M., Dyakonov's paper:Equivalent norms on Lipschitz-type spaces of holomorphic functions, Acta Math., 1999, 183:141-143.
[25] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integrals and Series, Elementary Functions, 1, Gordon and Breach, New York, 1986.
[26] Strzelechi P., On biharmonic maps and their generalizations, Calc. Var. Partial. Differ. Equ., 2003, 18:401-432.
[27] Selvadurai A. P. S., Partial Differential Equations in Mechanics 2:The Biharmonic Equation, Poisson's Equation, Springer-Verlag, Berlin, 2000.
[28] Weisstein E. W., CRC Concise Encyclopedia of Mathematics, CRC Press, 2002.
[29] Zygmund A., Trigonometrical Series, Chelsea Publishing Co., 2nd edition, New York, 1952.

[1]王晟. 球面Sd-1上的广义Ul'yanov型不等式[J]. Acta Mathematica Sinica, English Series, 2011, 54(1): 115-124.
[2]李宏亮, 徐罕. 加权Lorentz空间上的连续模和Gagliardo--Nirenberg型不等式[J]. Acta Mathematica Sinica, English Series, 2010, 53(6): 1225-1238.
[3]邢富冲;. Bergman空间B_q~p(p>0,q>1)中的多项式最佳逼近的逆定理[J]. Acta Mathematica Sinica, English Series, 2006, 49(3): 519-524.
[4]邢富冲;. Bergman空间B_q~p(p>0,q>1)中的Bernstein型不等式[J]. Acta Mathematica Sinica, English Series, 2006, 49(2): 431-434.
[5]邢富冲;. Bergman空间B_q~p(01)中的Hardy-Littlewood逆定理[J]. Acta Mathematica Sinica, English Series, 2006, 49(1): 105-114.
[6]曹飞龙. 多元Stancu多项式与连续模[J]. Acta Mathematica Sinica, English Series, 2005, 48(1): 51-62.
[7]危启才. 大偏差与l~p-值Wiener过程在Hlder范数下的泛函连续模[J]. Acta Mathematica Sinica, English Series, 2003, 46(4): 697-708.
[8]郭顺生;刘喜武. 关于函数及其导数用Bernstein-Durrmeyer算子的同时逼近[J]. Acta Mathematica Sinica, English Series, 2000, 43(2): 367-374.
[9]刘京军. 布朗运动在(r,p)-容度意义下的连续模的泛函形式[J]. Acta Mathematica Sinica, English Series, 1999, 42(6): 0-0+0.
[10]房艮孙. 周期可微函数类上的最优求积公式[J]. Acta Mathematica Sinica, English Series, 1993, 36(4): 563-570.
[11]郭顺生. W~1H_c~ω的一类宽度[J]. Acta Mathematica Sinica, English Series, 1993, 36(3): 374-381.
[12]谢庭藩. 单边条件下Fourier和的逼近[J]. Acta Mathematica Sinica, English Series, 1986, 29(4): 481-489.
[13]李武. 关于代数多项式逼近的Тиман型定理[J]. Acta Mathematica Sinica, English Series, 1986, 29(4): 544-549.
[14]卢志康. 关于Fourier级数的收敛和求和[J]. Acta Mathematica Sinica, English Series, 1986, 29(3): 378-384.
[15]孙燮华. 关于连续函数用有理插值算子的逼近[J]. Acta Mathematica Sinica, English Series, 1986, 29(2): 195-206.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23636
相关话题/空间 数学 科技 代数 衡阳师范学院