删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Hardy和Littlewood的一个三角和

本站小编 Free考研考试/2021-12-27

Hardy和Littlewood的一个三角和 何圆内江师范学院数学与信息科学学院 内江 641100 On a Trigonometric Sum of Hardy and Littlewood Yuan HESchool of Mathematics and Information Science, Neijiang Normal University, Neijiang 641100, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(399 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文对Hardy和Littlewood考虑的一个有限三角和做了进一步地研究.通过充分运用Chebyshev多项式和Möbius函数的性质,建立了该有限三角和的一个有趣的恒等式,并得到了一个精确的渐近公式.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-07-23
MR (2010):O156.4
基金资助:国家自然科学基金资助项目(11326050)
作者简介: 何圆,E-mail:hyyhe@aliyun.com
引用本文:
何圆. Hardy和Littlewood的一个三角和[J]. 数学学报, 2020, 63(3): 271-280. Yuan HE. On a Trigonometric Sum of Hardy and Littlewood. Acta Mathematica Sinica, Chinese Series, 2020, 63(3): 271-280.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2020/V63/I3/271


[1] Apostol T. M., Introduction to Analytic Number Theory, Springer, New York, 1976.
[2] Berndt B. C., Yeap B. P., Explicit evaluations and reciprocity theorems for finite trigonometric sums, Adv. Appl. Math., 2002, 29:358-385.
[3] Berndt B. C., Zaharescu A., Finite trigonometric sums and class numbers, Math. Ann., 2004, 330:551-575.
[4] Chowla S., On a trigonometric sum, Proc. Indian Acad. Sci. Section A, 1938, 7:177-178.
[5] Egorychev G. P., Integral Representation and the Computation of Combinatorial Sums, Translations of Mathematical Monographs, vol. 59, Amer. Math. Soc., Providence, R.I., 1984.
[6] Fonseca C. M. d., Glasser M. L., Kowalenko V., Basic trigonometric power sums with applications, Ramanujan J., 2017, 42:401-428.
[7] Gervois A., Mehta M. L., Some trigonometric identities encountered by McCoy and Orrick, J. Math. Phys., 1995, 36:5098-5109.
[8] Gervois A., Mehta M. L., Some trigonometric identities II, J. Math. Phys., 1996, 37:4150-4155.
[9] Landau E., Vorlesungen über Zahlentheorie, Leipzig, S. Hirzel, 1927.
[10] Lv X. X., Shen S. M., On Chebyshev polynomials and their applications, Adv. Differ. Equ., 2017, 2017:Article ID 343.
[11] Ma R., Zhang W. P., Several identities involving the Fibonacci numbers and Lucas numbers, Fibonacci Quart., 2007, 45:164-171.
[12] Mason J. C., Handscomb D. C., Chebyshev Polynomials, Chapman and Hall, New York, 2003.
[13] McCoy B. M., Orrick W. P., Analyticity and integrability in the chiral Potts model, J. Stat. Phys., 1996, 83:839-865.

[1]关文吉, 李小雪. Dedekind和及第一类Chebyshev多项式[J]. 数学学报, 2019, 62(2): 219-224.
[2]李同柱, 聂昌雄. S4中具有调和共形高斯映照的超曲面[J]. Acta Mathematica Sinica, English Series, 2014, 57(6): 1231-1240.
[3]李方方. Sn+p中Möbius第二基本形式平行的子流形的刚性定理[J]. Acta Mathematica Sinica, English Series, 2014, 57(6): 1081-1088.
[4]钟定兴, 孙弘安, 张祖锦. Sn+1上具有三个互异常仿Blaschke特征值的超曲面[J]. Acta Mathematica Sinica, English Series, 2013, 56(5): 751-766.
[5]张忠祥. Möbius变换和正则函数的Poisson积分表示[J]. Acta Mathematica Sinica, English Series, 2013, 56(4): 487-504.
[6]肖映青, 邱维元. Julia集和等势线上的Chebyshev多项式[J]. Acta Mathematica Sinica, English Series, 2010, 53(2): 323-328.
[7]许贵桥;. Lagrange插值和Hermite-Fejér插值在Wiener空间下的平均误差[J]. Acta Mathematica Sinica, English Series, 2007, 50(6): 1281-129.
[8]贾仲孝. 求解大规模非Hermite线性方程组的Krylov子空间型方法的收敛性分析[J]. Acta Mathematica Sinica, English Series, 1998, 41(5): -.
[9]朱来义. 关于修正的Lagrange插值多项式[J]. Acta Mathematica Sinica, English Series, 1993, 36(1): 136-144.
[10]孙燮华. 关于连续函数用有理插值算子的逼近[J]. Acta Mathematica Sinica, English Series, 1986, 29(2): 195-206.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23601
相关话题/空间 数学 数学与信息科学学院 多项式 内江