删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

一个引入中间变量的一般非齐次核全平面Hilbert型积分不等式

本站小编 Free考研考试/2021-12-27

一个引入中间变量的一般非齐次核全平面Hilbert型积分不等式 廖建全, 杨必成广东第二师范学院数学系 广州 510303 On a Hilbert-Type Integral Inequality with the General Nonhomogeneous Kernel and the Intermediate Variables in the Whole Plane Jian Quan LIAO, Bi Cheng YANGDepartment of Mathematics, Guangdong University of Education, Guangzhou 510303, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(471 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要应用实分析及权函数的方法,引入一些参数及中间变量,建立一个一般非齐次核全平面Hilbert型积分不等式的若干等价陈述.常数因子被证明是最佳的.作为应用,一个一般齐次核全平面Hilbert型积分不等式的若干等价陈述被导出.我们还考虑了一些特殊情况、算子表示及若干例子.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2018-12-10
MR (2010):O178
基金资助:国家自然科学基金青年科学基金资助项目(11401113);广东省2017年重点平台及科研项目—特色创新类项目(自然科学)(2017KTSCX133)
作者简介: 廖建全,E-mail:lamth@163.com;杨必成,E-mail:bcyang818@163.com
引用本文:
廖建全, 杨必成. 一个引入中间变量的一般非齐次核全平面Hilbert型积分不等式[J]. 数学学报, 2020, 63(1): 27-44. Jian Quan LIAO, Bi Cheng YANG. On a Hilbert-Type Integral Inequality with the General Nonhomogeneous Kernel and the Intermediate Variables in the Whole Plane. Acta Mathematica Sinica, Chinese Series, 2020, 63(1): 27-44.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2020/V63/I1/27


[1] Chen Q., Yang B. C., A survey on the study of Hilbert-type inequalities, Journal of Inequalities and Applications, 2015:302.
[2] Debnath L., Yang B. C., Recent developments of Hilbert-type discrete and integral inequalities with applications, International Journal of Mathematics and Mathematical Sciences, Vol. 2012, Article ID 871845, 29 pages.
[3] Gu Z. H., Yang B. C., A Hilbert-type integral inequality in the whole plane with a non-homogeneous kernel and a few parameters, Journal of Inequalities and Applications, 2015:314.
[4] Hardy G. H., Littlewood J. E., Pólya G., Inequalities, Cambridge University Press, Cambridge, USA, 1934.
[5] He B., Yang B. C., On a Hilbert-type integral inequality with the homogeneous kernel of 0-degree and the hypergeometrc function, Mathematics in Practice and Theory, 2010, 40(18):105-211.
[6] He B., Yang B. C., On an inequality concerning a non-homogeneous kernel and the hypergeometric function, Tamsul Oxford Journal of Information and Mathematical Sciences, 2011, 27(1):75-88.
[7] Hong Y., On the structure character of Hilbert's type integral inequality with homogeneous kernal and applications, Journal of Jilin University (Science Edition), 2017, 55(2), 189-194.
[8] Hong Y., Huang Q. L., Yang B. C., et al., The necessary and sufficient conditions for the existence of a kind of Hilbert-type multiple integral inequality with the non-homogeneous kernel and its applications, Journal of Inequalities and Applications, 2017:316.
[9] Huang X. Y., Cao J. F., He B., et al., Hilbert-type and Hardy-type integral inequalities with operator expressions and the best constants in the whole plane, Journal of Inequalities and Applications, 2015:129.
[10] Huang Q. L., Wu S. H., Yang B. C., Parameterized Hilbert-type integral inequalities in the whole plane, The Scientific World Journal, Vol. 2014, Article ID 169061, 8 pages.
[11] Kuang J. C., Applied Inequalities (in Chinese), Shandong Science and Technology Press, Ji'nan, 2004.
[12] Kuang J. C., Real and Functional Analysis (Continuation) (Second volume), Higher Education Press, Beijing, 2015.
[13] Rassias M. Th., Yang B. C., On half-discrete Hilbert's inequality, Applied Mathematics and Computation, 2013, 220:75-93.
[14] Rassias M. Th., Yang B. C., A multidimensional half-discrete Hilbert-type inequality and the Riemann zeta function, Applied Mathematics and Computation, 2013, 225:263-277.
[15] Rassias M. Th., Yang B. C., On a multidimensional half-discrete Hilbert-type inequality related to the hyperbolic cotangent function, Applied Mathematics and Computation, 2013, 242:800-813.
[16] Rassias M. Th., Yang B. C., A multidimensional Hilbert-type integral inequality related to the Riemann zeta function, Applications of Mathematics and Informatics in Science and Engineering, N. J. Daras, ed., Springer, New York, 417-433, 2014.
[17] Rassias M. Th., Yang B. C., A Hilbert-type integral inequality in the whole plane related to the hyper geometric function and the beta function, Journal of Mathematical Analysis and Applications, 2015, 428(2):1286-1308.
[18] Rassias M. Th., Yang B. C., Equivalent properties of a Hilbert-type integral inequality with the best constant factor related the Hurwitz zeta function, Ann. Funct. Anal., 2018, 9(2):282-295.
[19] Wang A. Z., Yang B. C., A new Hilbert-type integral inequality in whole plane with the non-homogeneous kernel, Journal of Inequalities and Applications, 2011:123.
[20] Wang Z. Q., Guo D. R., Introduction to Special Functions (in Chinese), Science Press, Beijing, 1979.
[21] Xie Z. T., Zeng Z., Sun Y. F., A new Hilbert-type inequality with the homogeneous kernel of degree-2, Advances and Applications in Mathematical Sciences, 2013, 12(7):391-401.
[22] Xin D. M., A Hilbert-type integral inequality with the homogeneous kernel of zero degree, Mathematical Theory and Applications, 2010, 30(2):70-74.
[23] Xin D. M., Yang B. C., A Hilbert-type integral inequality in whole plane with the homogeneous kernel of degree-2, Journal of Inequalities and Applications, 2011, Article ID 401428, 11 pages.
[24] Xu J. S., Hardy-Hilbert's inequalities with two parameters, Advances in Mathematics, 2007, 36(2):63-76.
[25] Yang B. C., The Norm of Operator and Hilbert-type Inequalities (in Chinese), Science Press, Beijing, 2009.
[26] Yang B. C., Hilbert-Type Integral Inequalities, Bentham Science Publishers Ltd., The United Arab Emirates, 2009.
[27] Yang B. C., On the norm of an integral operator and applications, J. Math. Anal. Appl., 2006, 321:182-192.
[28] Yang B. C., On the norm of a Hilbert's type linear operator and applications, J. Math. Anal. Appl., 2007, 325:529-541.
[29] Yang B. C., A Hilbert-type integral inequality with the homogenous kernel of degree 0, Journal of Shandong University (Natural Science), 2010, 45(2):103-106.
[30] Yang B. C., Chen Q., Equivalent conditions of existence of a class of reverse Hardy-type integral inequalities with nonhomogeneous kernel, Journal of Jilin University (Science Edition), 2017, 55(4):804-808.
[31] Yang B. C., Equivalent conditions of the existence of Hardy-type and Yang-Hilbert-type integral inequalities with the nonhomogeneous kernel, Journal of Guangdong University of Education, 2017, 37(3):5-10.
[32] Yang B. C., On some equivalent conditions related to the bounded property of Yang-Hilbert-type operator, Journal of Guangdong University of Education, 2017, 37(5):5-11.
[33] Yang Z. M., Yang B. C., Equivalent conditions of the existence of the reverse Hardy-type integral inequalities with the nonhomogeneous kernel, Journal of Guangdong University of Education, 2017, 37(5):28-32.
[34] Yang B. C., Krnic M., A half-discrete Hilbert-type inequality with a general homogeneous kernel of degree 0, Journal of Mathematical Inequalities, 2012, 6(3):401-417.
[35] Yang B. C., A new Hilbert-type integral inequality, Soochow Journal of Mathematics, 2017, 33(4):849-859.
[36] Yang B. C., A new Hilbert-type integral inequality with some parameters, Journal of Jilin University (Science Edition), 2008, 46(6):1085-1090.
[37] Yang B. C., A Hilbert-type integral inequality with a non-homogeneous kernel, Journal of Xiamen University (Natural Science), 2008, 48(2):165-169.
[38] Yang B. C., A reverse Hilbert-type integral inequality with a non-homogeneous kernel, Journal of Jilin University (Science Edition), 2011, 49(3):437-441.
[39] Zeng Z., Raja Rama Gandhi K., Xie Z. T., A new Hilbert-type inequality with the homogeneous kernel of degree-2 and with the integral, Bulletin of Mathematical Sciences and Applications, 2014, 3(1):11-20.
[40] Zeng Z., Xie Z. T., On a new Hilbert-type integral inequality with the homogeneous kernel of degree 0 and the integral in whole plane, Journal of Inequalities and Applications, 2010, Article ID 256796, 9 pages.

[1]吴秀峰, 黄俊杰. 3×3阶上三角算子矩阵的点谱、剩余谱和连续谱[J]. 数学学报, 2019, 62(6): 817-832.
[2]王晓峰, 夏锦, 陈建军. 广义Fock空间上的Hankel算子[J]. 数学学报, 2019, 62(4): 561-572.
[3]乔艳芬, 侯国林, 阿拉坦仓. 基于二次算子族的无界Hamilton算子根向量组的基性质[J]. 数学学报, 2019, 62(4): 613-632.
[4]王晓峰, 夏锦, 陈建军. 广义Segal-Bargmann空间上无界Toeplitz算子的交换[J]. 数学学报, 2019, 62(3): 409-426.
[5]秦杰, 刘柚岐, 黄穗. Dirichlet空间上Bergman型Toeplitz算子的代数性质[J]. 数学学报, 2019, 62(3): 449-456.
[6]黄永峰, 曹怀信, 王文华. 伪自伴量子系统的酉演化与绝热定理[J]. 数学学报, 2019, 62(3): 469-478.
[7]杨沿奇, 陶双平. θ型C-Z算子在加权变指数Morrey空间上的有界性[J]. 数学学报, 2019, 62(3): 503-514.
[8]程旺, 马涛. 奇异积分算子q-变差的定量最优加权估计[J]. 数学学报, 2019, 62(2): 279-286.
[9]黄穗. Fock空间上径向函数诱导的Toeplitz算子[J]. 数学学报, 2019, 62(2): 345-352.
[10]沈丛丛, 蒋立宁, 王利广. 冯·诺依曼代数的可测算子的性质[J]. 数学学报, 2019, 62(2): 293-302.
[11]高凤霞, 杨士林. Sweedler 4维Hopf代数的Rota-Baxter代数结构[J]. 数学学报, 2019, 62(1): 71-86.
[12]海国君, 阿拉坦仓. 极分解定理的注记[J]. 数学学报, 2018, 61(6): 933-942.
[13]刘风, 吴玉荣. Kakeya极大算子及其分数次情形的正则性[J]. 数学学报, 2018, 61(5): 783-800.
[14]王紫, 王玉文. Banach空间中基于Neumann引理的拟线性广义逆扰动定理[J]. 数学学报, 2018, 61(5): 751-760.
[15]桑元琦, 丁宣浩. 重调和Hardy空间Toeplitz算子的交换性[J]. 数学学报, 2018, 61(4): 577-584.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23549
相关话题/数学 空间 代数 交换 学报