摘要本文研究右半直线平方可积函数空间L2(R+)中的一类伸缩调制系.实际问题中时间变量不可取负值,L2(R+)可模拟因果信号空间.但因R+按加法不能作成一个群,它不容许小波与Gabor系.我们研究L2(R+)中由特征函数生成的伸缩调制系(MD-系)框架,引入了R+中MD-框架集的概念,利用"伸缩等价"与"基数函数"方法刻画了L2(R+)中MD-Bessel集与完备集;得到了关于MD-Riesz基集的两个充分条件,并证明了通过对MD-Riesz基集进行有限可测分解可得到MD-框架集. | | 服务 | | | 加入引用管理器 | | E-mail Alert | | RSS | 收稿日期: 2019-01-05 | | 基金资助:国家自然科学基金资助项目(11971043)
| 通讯作者:李云章E-mail: yzlee@bjut.edu.cn | 作者简介: 王雅慧,E-mail:wangyahui@emails.bjut.edu.cn |
[1] Arambaši? L., Baki? D., Raji? R., Dimension functions, scaling sequences, and wavelet sets, Studia Math., 2010, 198:1-32. [2] Auscher P., Solution of two problems on wavelets, J. Geom. Anal., 1995, 5:181-236. [3] Baggett L. W. H., Medina A., Merrill K. D., Generalized multi-resolution analyses and a construction procedure for all wavelet sets in Rn, J. Fourier Anal. Appl., 1999, 5:563-573. [4] Benedetto J. J., Benedetto R. L., The Construction of Wavelet Sets, Wavelets and Multiscale Analysis, Appl. Numer. Harmon. Anal., Birkhäuser, Boston, 2011:17-56. [5] Benedetto J. J., Sumetkijakan S., Tight frames and geometric properties of wavelet sets, Adv. Comput. Math., 2006, 24:35-56. [6] Benedetto J. J., King E. J., Smooth functions associated with wavelet sets on Rd, d ≥ 1, and frame bound gaps, Acta Appl. Math., 2009, 107:121-142. [7] Bownik M., Ross K., The structure of translation-invariant spaces on locally compact abelian groups, J. Fourier Anal. Appl., 2015, 21:849-884. [8] Cabrelli C., Paternostro V., Shift-invariant spaces on LCA groups, J. Funct. Anal., 2010, 258:2034-2059. [9] Casazza P., Kalton N., Roots of complex polynomials and Weyl-Heisenberg frames, Proc. Amer. Math. Soc., 2002, 130:2313-2318. [10] Christensen O., An Introduction to Frames and Riesz Bases, Springer, Birkhäuser, 2016. [11] Christensen O., Goh S. S., Fourier-like frames on locally compact abelian groups, J. Approx. Theory, 2015, 192:82-101. [12] Dai X., Diao Y., Gu Q., et al., Frame wavelet sets in Rd, J. Comput. Appl. Math., 2003, 155:69-82. [13] Dai X., Diao Y., Gu Q., Frame wavelets with frame set support in the frequency domain, Illinois J. Math., 2004, 48:539-558. [14] Dai X., Diao Y., Gu Q., et al., The existence of subspace wavelet sets, J. Comput. Appl. Math., 2003, 155:83-90. [15] Dai X., Larson D. R., Wandering vectors for unitary systems and orthogonal wavelets, Mem. Amer. Math. Soc., 1998, 134:68. [16] Dai X., Larson D. R., Speegle D. M., Wavelet sets in Rn, J. Fourier Anal. Appl., 1997, 3:451-456. [17] Dai X. R., Sun Q., The abc-problem for Gabor systems, Mem. Amer. Math. Soc., 2016, 244:99. [18] Fang X., Wang X., Construction of minimally supported frequency wavelets, J. Fourier Anal. Appl., 1995, 2:315-327. [19] Feichtinger H. G., Gröchenig K. H., Banach spaces related to integrable group representations and their atomic decompositions, I. J. Funct. Anal., 1989, 86:307-340. [20] Feichtinger H. G., Strohmer T., Gabor Analysis and Algorithms, Theory and Applications, Birkhäuser, Boston, 1998. [21] Feichtinger H. G., Strohmer T., Advances in Gabor Analysis, Birkhäuser, Boston, 2003. [22] Fu X., Gabardo J. P., Construction of wavelet sets using integral self-affine multi-tiles, J. Fourier Anal. Appl., 2014, 20:234-257. [23] Gabardo J. P., Yu X. J., Construction of wavelet sets with certain self-similarity properties, J. Geom. Anal., 2004, 14:629-651. [24] Gröchenig K., Foundations of Time-Frequency Analysis, Birkhäuser, Boston, 2001. [25] Gu Q., Han D., When a characteristic function generates a Gabor frame, Appl. Comput. Harmon. Anal., 2008, 24:290-309. [26] Han B., Framelets and Wavelets, Algorithms, Analysis, and Applications, Cham, Springer, 2017. [27] Han D., Larson, D.R., Frames, bases and group representations, Mem. Amer. Math. Soc., 2000, 147:94. [28] Heil C., A Basis Theory Primer, Expanded edition, Birkhäuser, New York, 2011. [29] Heil C., History and evolution of the density theorem for Gabor frames, J. Fourier Anal. Appl., 2007, 13:113-166. [30] Hernández E., Weiss G., A First Course on Wavelets, Boca Raton, CRC Press, 1996. [31] Hernández E., Wang X., Weiss G., Smoothing minimally supported frequency (MSF) wavelets:Part I, J. Fourier Anal. Appl., 1996, 2:329-340. [32] Hernández E., Wang X., Weiss G., Smoothing minimally supported frequency wavelets:Part II, J. Fourier Anal. Appl., 1997, 3:23-41. [33] Ionascu E. J., Larson D. R., Pearcy C. M., On wavelet sets, J. Fourier Anal. Appl., 1998, 4:711-721. [34] Ionascu E. J., A new construction of wavelet sets, Real Anal. Exchange, 2002, 28:593-609. [35] Ionascu E. J., Wang Y., Simultaneous translational and multiplicative tiling and wavelet sets in R2, Indiana Univ. Math. J., 2006, 55:1935-1949. [36] Jakobsen M. S., Lemvig J., Reproducing formulas for generalized translation invariant systems on locally compact abelian groups, Trans. Amer. Math. Soc., 2016, 368:8447-8480. [37] Janssen A. J. E. M., Representations of Gabor frame Operators, Twentieth Century Harmonic Analysis-A Celebration (Il Ciocco, 2000), NATO Sci. Ser. II Math. Phys. Chem., 33, Kluwer Acad. Publ., Dordrecht, 2001, 73-101. [38] Janssen A. J. E. M., Zak transforms with few zeros and the tie, Advances in Gabor Analysis, Appl. Numer. Harmon. Anal., Birkhäuser, Boston, MA, 2003:31-70. [39] Kutyniok G., Labate D., The theory of reproducing systems on locally compact abelian groups, Colloq. Math., 2006, 106:197-220. [40] Li Y. Z., Wang Y. H., The density theorem of a class of dilation-and-modulation systems on the half real line, arXiv:1712.02606. [41] Li Y. Z., Zhang W., Dilation-and-modulation systems on the half real line, J. Inequal. Appl., 2016, 186:11. [42] Li Y. Z., Zhang W., Multi-window dilation-and-modulation frames on the half real line, Sci. China Math., 2017, doi:10.1007/s11425-018-9468-8. [43] Seip K., Regular sets of sampling and interpolation for weighted Bergman spaces, Proc. Amer. Math. Soc., 1993, 117:213-220. [44] Volkmer H., Frames of wavelets in Hardy space, Analysis, 1995, 15:405-421. [45] Wang Y. H., Li Y. Z., A class of vector-valued dilation-and-modulation frames on the half real line, Math. Meth. Appl. Sci., 2018, 41:3900-3912. [46] Young R. M., An Introduction to Nonharmonic Fourier Series, Academic Press, New York, 1980. [47] Yu X. J., Gabardo J. P., Nonuniform wavelets and wavelet sets related to one-dimensional spectral pairs, J. Approx. Theory, 2007, 145:133-139.
|
[1] | 张岩, 李云章. 单个生成元Walsh p-进制平移不变空间伸缩的交与并[J]. 数学学报, 2019, 62(1): 1-12. | [2] | 赵静, 李云章. 实直线周期子集上的向量值子空间弱Gabor双框架[J]. 数学学报, 2018, 61(4): 651-662. | [3] | 林丽琼, 张云南, 朱玉灿. 无穷维Hilbert空间上框架的算子与范数[J]. 数学学报, 2017, 60(6): 911-918. | [4] | 许贵桥. 单形积上的Sobolev类逼近问题的易处理性[J]. 数学学报, 2017, 60(4): 605-618. | [5] | 韩德广. 时频分析与算子代数[J]. 数学学报, 2017, 60(1): 3-18. | [6] | 安桂梅, 李磊, 刘锐. p-算子空间上的框架逼近和嵌入[J]. 数学学报, 2017, 60(1): 123-132. | [7] | 黄永东. 具有特殊伸缩矩阵的Parseval框架小波集的结构[J]. 数学学报, 2016, 59(2): 163-186. | [8] | 周锋, 曾雪迎, 杨力华. 一种基于正则化的稀疏表示方法[J]. Acta Mathematica Sinica, English Series, 2015, 58(4): 649-660. | [9] | 王玮, 施咸亮. 仿射Bessel序列的判别[J]. Acta Mathematica Sinica, English Series, 2015, 58(4): 673-678. | [10] | 郭训香. 框架的强分离性与紧框架的构造[J]. Acta Mathematica Sinica, English Series, 2015, 58(4): 585-592. | [11] | 吴国昌, 曹怀信, 鲁大勇. 波包Parseval框架的刻画及应用[J]. Acta Mathematica Sinica, English Series, 2015, 58(1): 91-102. | [12] | 丁明玲, 肖祥春, 朱玉灿. Hilbert空间中的K-框架[J]. Acta Mathematica Sinica, English Series, 2014, 57(6): 1089-1100. | [13] | 周燕, 朱玉灿. Hilbert空间中的K-g-框架的性质[J]. Acta Mathematica Sinica, English Series, 2014, 57(5): 1031-1040. | [14] | 郭训香. g-框架的一些新性质[J]. Acta Mathematica Sinica, English Series, 2014, 57(5): 881-892. | [15] | 李登峰, 陈书燕. 对偶框架稀疏性的两个结果[J]. Acta Mathematica Sinica, English Series, 2014, 57(4): 737-744. |
|
PDF全文下载地址:
http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23550
点星网与度量空间的映像林寿1,黄燕晖2,张静21.宁德师范学院数理学院宁德352100;2.闽南师范大学数学与统计学院漳州363000Point-starNetworksandImagesofMetricSpacesShouLIN1,YanHuiHUANG2,JingZHANG21.Schoolof ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Banach空间度量广义逆的乘积扰动杜法鹏1,薛以锋21.徐州工程学院数学与物理科学学院徐州221008;2.华东师范大学算子代数研究中心上海市核心数学与实践重点实验室华东师范大学数学科学学院上海200241MultiplicativePerturbationsofMetricGeneralized ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27渐近Teichmller空间的不唯一性黄志勇,周泽民中国人民大学数学系北京100872NonuniquenessPropertiesonAsymptoticTeichmullerSpaceZhiYongHUANG,ZeMinZHOUDepartmentofMathematics,Renm ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Hilbert空间上新的变分不等式问题和不动点问题的粘性迭代算法蔡钢重庆师范大学数学科学学院重庆401331ViscosityIterativeAlgorithmsforaNewVariationalInequalityProblemandFixedPointProbleminHilbertSpac ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27多复变中正规权Zygmund空间上的几个性质黎深莲,张学军湖南师范大学数学与统计学院长沙410006SeveralPropertiesontheNormalWeightZygmundSpaceinSeveralComplexVariablesShenLianLI,XueJunZHANGCollege ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27广义Fock空间上的Hankel算子王晓峰1,夏锦1,陈建军21.广州大学数学与信息科学学院广东高等学校交叉学科实验室广州510006;2.肇庆学院数学与统计学院肇庆526061HankelOperatorsonGeneralizedFockSpacesXiaoFengWANG1,JinXIA1,J ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27广义Segal-Bargmann空间上无界Toeplitz算子的交换王晓峰1,夏锦1,陈建军2,31广州大学数学与信息科学学院广东高等学校交叉学科实验室广州510006;2肇庆学院数学与统计学院肇庆526061;3中山大学数学学院广州510275CommutingToeplitzOperatorsa ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27类拟b-距离空间中几类循环压缩映射不动点定理司马傲蕾,贺飞,路宁内蒙古大学数学科学学院呼和浩特010021FixedPointTheoremsforSeveralCyclic-ContractiveMappingsinDislocatedQuasi-b-metricSpacesAoLeiSIMA,F ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Dirichlet空间上Bergman型Toeplitz算子的代数性质秦杰,刘柚岐,黄穗重庆师范大学数学科学学院重庆401331AlgebraicPropertiesofBergman-TypeToeplitzOperatorsontheDirichletSpaceJieQIN,YouQiLIU,S ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27型C-Z算子在加权变指数Morrey空间上的有界性杨沿奇,陶双平西北师范大学数学与统计学院兰州730070Boundednessof-typeC-ZOperatorsonWeightedVariableExponentMorreySpacesYanQiYANG,Shuan ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|