摘要对于下面p-Kirchhoff型泛函
我们证明了约束在流形Sc:={u∈W1,p(Rn):∫Rn}|u|pdx=cp}上全局极小点或山路型临界点的存在性与唯一性,且这些临界点是某个Gagliardo-Nirenberg不等式的最优化子,特别当p∈(1,2]时,它们在不计平移意义下是唯一的.我们扩展了已有文献中p=2的情形的相关结果. | | 服务 | | | 加入引用管理器 | | E-mail Alert | | RSS | 收稿日期: 2018-12-16 | | 基金资助:国家自然科学基金(11871387);中央高校基本科研业务费专项基金(2019IB009,2019IVB084)
| 通讯作者:曾小雨E-mail: xyzeng@whut.edu.cn | 作者简介: 王壮壮,E-mail:1546085079@qq.com |
[1] Bellazzini J., Jeanjean L., Luo T. J., Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations, Proc. Lond. Math. Soc., 2013, 107(3):303-339. [2] Damascelli L., Pacella F., Ramaswamy M., Symmetry of ground states of p-Laplace equations via the moving plane method, Arch. Ration. Mech. Anal., 1999, 148(4):291-308. [3] Deng Y. B., Peng S. J., Shuai W., Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in R3, J. Funct. Anal., 2015, 269:3500-3527. [4] Gu L. J., Zeng X. Y., Zhou H. S., Eigenvalue problem for a p-Laplacian equation with trapping potentials, Nonlinear Analysis, 2017, 148:212-227. [5] Guo H. L., Zhang Y. M., Zhou H. S., Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential, Commun. Pure Appl. Anal., 2018, 17:1875-1897. [6] He Y., Concentrating bounded states for a class of singularly perturbed Kirchhoff type equations with a general nonlinearity, J. Differential Equations, 2016, 261(11):6178-6220. [7] He Y., Li G. B., Peng S. J., Concentrating bound states for Kirchhoff type problems in R3 involving critical Sobolev exponents, Adv. Nonlinear Stud., 2014, 14:441-468. [8] He X. M., Zou W. M., Existence and concentration behavior of positive solutions for a Kirchhoff equation in R3, J. Differential Equations, 2012, 2:1813-1834. [9] Jeanjean L., Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal., 1997, 28(10):1633-1659. [10] Kirchhoff G., Mechanik, Teubner, Leipzig, 1883. [11] Li G. B., Luo P., Peng S. J., et al., Uniqueness and nondegeneracy of positive solutions to Kirchhoff equations and its applications in singular perturbation problems, arXiv:1703.05459. [12] Li G. B., Ye H. Y., Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in R3, J. Differential Equations, 2014, 257:566-600. [13] Li Y., Ni W. M., Radial symmetry of positive solutions of nonlinear elliptic equations in Rn, Comm. Partial Differential Equations, 1993, 18:1043-1054. [14] Mao A. M., Zhang Z. T., Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Anal., 2009, 70(3):1275-1287. [15] Perera K., Zhang Z. T., Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differential Equations, 2006, 221(1):246-255. [16] Serrin J., Tang M. X., Uniqueness of ground states for quasilinear elliptic equations, Indiana Univ. Math. J., 2000, 49(3):897-923. [17] Wu X., Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in RN, Nonlinear Anal. Real World Appl., 2011, 12:1278-1287. [18] Ye H. Y., The sharp existence of constrained minimizers for a class of nonlinear Kirchhoff equations, Math. Methods Appl. Sci., 2015, 38(13):2663-2679. [19] Zeng X. Y., Zhang Y. M., Existence and uniqueness of normalized solutions for the Kirchhoff equation, Appl. Math. Lett., 2017, 1:52-59.
|
[1] | 刘志学, 张庆彩. 涉及移动目标的亚纯映射唯一性定理[J]. 数学学报, 2019, 62(5): 783-794. | [2] | 林伟川, 林培强. L-函数的唯一性[J]. 数学学报, 2018, 61(4): 601-608. | [3] | 林跃峰. I-hedrite图平面嵌入的唯一性[J]. 数学学报, 2017, 60(6): 919-930. | [4] | 徐家发, 董卫. 分数阶p-Laplacian边值问题正解的存在唯一性[J]. 数学学报, 2016, 59(3): 385-396. | [5] | 宋宇鹏, 朱小丽, 李宇华. 一类带变号权函数的p-Kirchhoff方程正解的存在性与多解性[J]. 数学学报, 2016, 59(2): 199-208. | [6] | 刘慧芳, 毛志强. 整函数与其差分算子的唯一性定理[J]. Acta Mathematica Sinica, English Series, 2015, 58(5): 825-832. | [7] | 胡业新. 一类拟线性椭圆型方程边值问题的稳定性[J]. Acta Mathematica Sinica, English Series, 2014, 57(6): 1181-1190. | [8] | 胡盛清, 王硕. 五体问题的中心构型及其相对平衡解[J]. Acta Mathematica Sinica, English Series, 2014, 57(6): 1199-1202. | [9] | 彭定涛, 俞建, 修乃华. 几类非线性问题解的通有唯一性[J]. Acta Mathematica Sinica, English Series, 2014, 57(2): 373-386. | [10] | 杨婉蓉. 3D轴对称Boussinesq方程强解的存在唯一性[J]. Acta Mathematica Sinica, English Series, 2013, 56(5): 637-650. | [11] | 张杰. Brück猜想的一类微分和差分方程[J]. Acta Mathematica Sinica, English Series, 2013, 56(1): 61-66. | [12] | 易斌, 苏敏. 具有两个或三个IM公共值集的亚纯函数[J]. Acta Mathematica Sinica, English Series, 2012, 55(6): 1085-1094. | [13] | 易斌, 李玉华. CM分担两个公共值集的亚纯函数唯一性[J]. Acta Mathematica Sinica, English Series, 2012, (2): 363-368. | [14] | 曹廷彬, 仪洪勋. 圆环内亚纯函数分担IM集合的唯一性定理[J]. Acta Mathematica Sinica, English Series, 2011, 54(4): 623-632. | [15] | 石环环, 陈才生, 徐红梅. 初值在L1中的非局部退化抛物型方程整体解的L∞估计[J]. Acta Mathematica Sinica, English Series, 2011, 54(3): 443-450. |
|
PDF全文下载地址:
http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23524
一类具有多重时滞的分数阶中立型微分系统的相对可控性杨礼昌,蒋威,盛家乐,刘婷婷,MusarrtNawaz安徽大学数学科学学院,合肥230601RelativeControllabilityofFractionalNeutralSystemwithMultipleDelaysYANGLichang,J ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27分数阶线性退化微分系统有限时间镇定性问题王盼盼,张志信,蒋威安徽大学数学科学学院,合肥230601Finite-timeStabilizabilityofFractionalLinearSingularDifferentialSystemWANGPanpan,ZHANGZhixin,JIANGWei ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27分数阶微分方程组非振动解的存在性刘有军,赵环环,康淑瑰山西大同大学数学与统计学院,大同037009ExistenceforNonoscillatorySolutionsofSystemofFractionalDifferentialEquationsLIUYoujun,ZhaoHuanhuan,Ka ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27双项时间分数阶慢扩散方程的一类高效差分方法杨晓忠,邵京,孙淑珍华北电力大学数理学院,北京102206AClassofEfficientDifferenceMethodsfortheDouble-termTimeFractionalSub-diffusionEquationYANGXiaozhong, ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27时间分数阶扩散方程双线性元的高精度分析樊明智,王芬玲,赵艳敏,史艳华,张亚东许昌学院数学与统计学院,许昌461000HighAccuracyAnalysisoftheBilinearElementfortheTime-FractionalDiffusionEqustionsFANMinzhi,WAN ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27非线性隐式分数阶微分方程耦合系统初值问题董佳华1,冯育强2,蒋君11.武汉科技大学理学院,武汉430065;2.冶金工业过程系统科学湖北省重点实验室,武汉430081TheProximalPointIterativeAlgorithmfortheInitialValueProblemforaCoup ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27具有分数阶导数的积分边值问题正解的存在性冯立杰天津大学数学学院,天津300350ExistenceofPositiveSolutionsforIntegralBoundaryValueProblemswithFractionalDerivativesFENGLijieSchoolofMathemat ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27基于分数阶滑模控制器的不确定分数阶混沌系统同步阎晓妹1,尚婷1,赵小国21.西安理工大学自动化与信息工程学院,西安710048;2.西安建筑科技大学机电工程学院,西安710055SynchronizationofUncertainFractional-orderChaoticSystemsBased ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27一类核反应堆数学模型正解的全局分歧陈瑞鹏,李小亚北方民族大学数学与信息科学学院,银川750021GlobalBifurcationofPositiveSolutionsofaMathematicalModelArisingInNuclearEngineeringCHENRuipeng,LIXiaoy ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27具有阶段结构的时滞分数阶捕食者-食饵系统的稳定性分析王虎1,田晶磊2,孙玉琴3,于永光11.中央财经大学统计与数学学院,北京100081;2.北京交通大学理学院,北京100044;3.内蒙古大学鄂尔多斯应用技术学院,内蒙古017000StabilityAnalysisofFractionalStag ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|