删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

一类p-Kirchhoff方程基态解的存在性与唯一性

本站小编 Free考研考试/2021-12-27

一类p-Kirchhoff方程基态解的存在性与唯一性 王壮壮, 曾小雨武汉理工大学理学院 武汉 430070 Existence and Uniqueness of Ground State Solutions for a Class of p-Kirchhoff Equations Zhuang Zhuang WANG, Xiao Yu ZENGSchool of Sciences, Wuhan University of Technology, Wuhan 430070, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(492 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要对于下面p-Kirchhoff型泛函

我们证明了约束在流形Sc:={uW1,p(Rn):∫Rn}|u|pdx=cp}上全局极小点或山路型临界点的存在性与唯一性,且这些临界点是某个Gagliardo-Nirenberg不等式的最优化子,特别当p∈(1,2]时,它们在不计平移意义下是唯一的.我们扩展了已有文献中p=2的情形的相关结果.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2018-12-16
MR (2010):O175.2
基金资助:国家自然科学基金(11871387);中央高校基本科研业务费专项基金(2019IB009,2019IVB084)
通讯作者:曾小雨E-mail: xyzeng@whut.edu.cn
作者简介: 王壮壮,E-mail:1546085079@qq.com
引用本文:
王壮壮, 曾小雨. 一类p-Kirchhoff方程基态解的存在性与唯一性[J]. 数学学报, 2019, 62(6): 879-888. Zhuang Zhuang WANG, Xiao Yu ZENG. Existence and Uniqueness of Ground State Solutions for a Class of p-Kirchhoff Equations. Acta Mathematica Sinica, Chinese Series, 2019, 62(6): 879-888.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2019/V62/I6/879


[1] Bellazzini J., Jeanjean L., Luo T. J., Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations, Proc. Lond. Math. Soc., 2013, 107(3):303-339.
[2] Damascelli L., Pacella F., Ramaswamy M., Symmetry of ground states of p-Laplace equations via the moving plane method, Arch. Ration. Mech. Anal., 1999, 148(4):291-308.
[3] Deng Y. B., Peng S. J., Shuai W., Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in R3, J. Funct. Anal., 2015, 269:3500-3527.
[4] Gu L. J., Zeng X. Y., Zhou H. S., Eigenvalue problem for a p-Laplacian equation with trapping potentials, Nonlinear Analysis, 2017, 148:212-227.
[5] Guo H. L., Zhang Y. M., Zhou H. S., Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential, Commun. Pure Appl. Anal., 2018, 17:1875-1897.
[6] He Y., Concentrating bounded states for a class of singularly perturbed Kirchhoff type equations with a general nonlinearity, J. Differential Equations, 2016, 261(11):6178-6220.
[7] He Y., Li G. B., Peng S. J., Concentrating bound states for Kirchhoff type problems in R3 involving critical Sobolev exponents, Adv. Nonlinear Stud., 2014, 14:441-468.
[8] He X. M., Zou W. M., Existence and concentration behavior of positive solutions for a Kirchhoff equation in R3, J. Differential Equations, 2012, 2:1813-1834.
[9] Jeanjean L., Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal., 1997, 28(10):1633-1659.
[10] Kirchhoff G., Mechanik, Teubner, Leipzig, 1883.
[11] Li G. B., Luo P., Peng S. J., et al., Uniqueness and nondegeneracy of positive solutions to Kirchhoff equations and its applications in singular perturbation problems, arXiv:1703.05459.
[12] Li G. B., Ye H. Y., Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in R3, J. Differential Equations, 2014, 257:566-600.
[13] Li Y., Ni W. M., Radial symmetry of positive solutions of nonlinear elliptic equations in Rn, Comm. Partial Differential Equations, 1993, 18:1043-1054.
[14] Mao A. M., Zhang Z. T., Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Anal., 2009, 70(3):1275-1287.
[15] Perera K., Zhang Z. T., Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differential Equations, 2006, 221(1):246-255.
[16] Serrin J., Tang M. X., Uniqueness of ground states for quasilinear elliptic equations, Indiana Univ. Math. J., 2000, 49(3):897-923.
[17] Wu X., Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in RN, Nonlinear Anal. Real World Appl., 2011, 12:1278-1287.
[18] Ye H. Y., The sharp existence of constrained minimizers for a class of nonlinear Kirchhoff equations, Math. Methods Appl. Sci., 2015, 38(13):2663-2679.
[19] Zeng X. Y., Zhang Y. M., Existence and uniqueness of normalized solutions for the Kirchhoff equation, Appl. Math. Lett., 2017, 1:52-59.

[1]刘志学, 张庆彩. 涉及移动目标的亚纯映射唯一性定理[J]. 数学学报, 2019, 62(5): 783-794.
[2]林伟川, 林培强. L-函数的唯一性[J]. 数学学报, 2018, 61(4): 601-608.
[3]林跃峰. I-hedrite图平面嵌入的唯一性[J]. 数学学报, 2017, 60(6): 919-930.
[4]徐家发, 董卫. 分数阶p-Laplacian边值问题正解的存在唯一性[J]. 数学学报, 2016, 59(3): 385-396.
[5]宋宇鹏, 朱小丽, 李宇华. 一类带变号权函数的p-Kirchhoff方程正解的存在性与多解性[J]. 数学学报, 2016, 59(2): 199-208.
[6]刘慧芳, 毛志强. 整函数与其差分算子的唯一性定理[J]. Acta Mathematica Sinica, English Series, 2015, 58(5): 825-832.
[7]胡业新. 一类拟线性椭圆型方程边值问题的稳定性[J]. Acta Mathematica Sinica, English Series, 2014, 57(6): 1181-1190.
[8]胡盛清, 王硕. 五体问题的中心构型及其相对平衡解[J]. Acta Mathematica Sinica, English Series, 2014, 57(6): 1199-1202.
[9]彭定涛, 俞建, 修乃华. 几类非线性问题解的通有唯一性[J]. Acta Mathematica Sinica, English Series, 2014, 57(2): 373-386.
[10]杨婉蓉. 3D轴对称Boussinesq方程强解的存在唯一性[J]. Acta Mathematica Sinica, English Series, 2013, 56(5): 637-650.
[11]张杰. Brück猜想的一类微分和差分方程[J]. Acta Mathematica Sinica, English Series, 2013, 56(1): 61-66.
[12]易斌, 苏敏. 具有两个或三个IM公共值集的亚纯函数[J]. Acta Mathematica Sinica, English Series, 2012, 55(6): 1085-1094.
[13]易斌, 李玉华. CM分担两个公共值集的亚纯函数唯一性[J]. Acta Mathematica Sinica, English Series, 2012, (2): 363-368.
[14]曹廷彬, 仪洪勋. 圆环内亚纯函数分担IM集合的唯一性定理[J]. Acta Mathematica Sinica, English Series, 2011, 54(4): 623-632.
[15]石环环, 陈才生, 徐红梅. 初值在L1中的非局部退化抛物型方程整体解的L估计[J]. Acta Mathematica Sinica, English Series, 2011, 54(3): 443-450.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23524
相关话题/数学 公共 科研 分数 武汉理工大学