删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

幂零流形上自映射的点态原像熵的可加性

本站小编 Free考研考试/2021-12-27

幂零流形上自映射的点态原像熵的可加性 黄保军1,21. 亳州学院电子与信息工程系 亳州 236800;
2. 淮北师范大学数学科学学院 淮北 235000 The Additivity of Pointwise Preimage Entropy for Selfmaps on Nilmanifolds Bao Jun HUANG1,21. Department of Electronic and Information Engineering, Bozhou University, Bozhou 236800, P. R. China;
2. School of Mathematical Science, Huaibei Normal University, Huaibei 235000, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(498 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要类似于拓扑熵,点态原像熵作为动力系统的不变量,也度量了紧度量空间上系统的复杂性.但至今不知其性质与拓扑熵是否完全一致,例如映射笛卡尔积的点态原像熵的可加性等.本文将把环面自映射笛卡尔积的点态原像熵的可加性,推广到紧幂零流形自映射的情形.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-03-11
MR (2010):O189.2
基金资助:亳州市人才引进项目资助课题
作者简介: 黄保军,E-mail:huangbaojun006-6@163.com
引用本文:
黄保军. 幂零流形上自映射的点态原像熵的可加性[J]. 数学学报, 2019, 62(6): 913-922. Bao Jun HUANG. The Additivity of Pointwise Preimage Entropy for Selfmaps on Nilmanifolds. Acta Mathematica Sinica, Chinese Series, 2019, 62(6): 913-922.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2019/V62/I6/913


[1] Brooks R., Odenthal C., Nielsen numbers for roots of maps of aspherical manifolds, Pacific J. Math., 1995, 170:405-420.
[2] Fadell E., Husseini S., On a theorem of Anosov on Nielsen numbers for nilmanifolds, Nonlinear Functional Analysis and Its Applications (Reidel), 1986, 173:46-51.
[3] Heath P. R., Keppelmann E. C., Model solvmanifolds for Lefschetz and Nielsen theories, Quaestiones Mathematicae, 2002, 25(4):483-501.
[4] Huang B. J., The additivity of pointwise preimage entropy for selfmaps on torus, Acta Math. Sin., Chinese Ser., 2013, 56(6):915-922.
[5] Huang B. J., Estimation and computation of a kind of point entropy, Adv. Math. China, 2005, 34(3):338-342.
[6] Hurley M., On topological entropy of maps, Ergod. Th. Dynam. Sys., 1995, 15:557-568.
[7] Keppelmann E. C., McMord C. K., The Anosov theorem for exponential solvmanifolds, Pacific J. Math., 1995, 170:143-159.
[8] Jezierski J., Marzantowicz W., Homotopy minimal periods for nilmanofold maps, Math. Z., 2002, 239:381-414.
[9] Mal'cev A. I., On a class of homogeneous spaces, english transl., Amer. Math. Soc. Transl., 1962, 9(1):276-307.
[10] Marzantowicz W., Przytycki F., Estimates of the topological entropy from below for continuous self-maps on some compact manifolds, Discrete and Continuous Dynamical Systems, 2008, 21(2):501-512.
[11] Mihailescu E., Urbá nski M., Inverse topological pressure with applications to holomorphic dymamics of several complex variables, Comm. Contemp. Math., 2004, 6(4):653-679.
[12] Nitecki Z., Przytycki F., Preimage entropy for mappings, Int. J. Bifur. Chaos., 1999, 9(9):1815-1843.
[13] Raghunathan M. S., Discrete Subgroups of Lie Groups, Springer, Berlin, Heidelberg, New York, 1972.
[14] Walters P., An Introduction to Ergodic Theory, Springer-Verlag, New York, Berlin, 1982.

[1]黄保军. 环面上自映射的点态原像熵的可加性[J]. Acta Mathematica Sinica, English Series, 2013, 56(6): 915-922.
[2]纪培胜, 赖弋新, 侯恩冉. Jordan代数上的可乘Jordan导子[J]. Acta Mathematica Sinica, English Series, 2010, 53(3): 571-578.
[3]王键;方向. 上半空间和多圆柱上的Baernstein定理[J]. Acta Mathematica Sinica, English Series, 1986, 29(3): 393-398.
[4]王戌堂. ω_μ-可加的拓扑空间(Ⅰ)[J]. Acta Mathematica Sinica, English Series, 1964, 14(5): 619-626.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23527
相关话题/空间 系统 数学 电子 代数