摘要本文研究了一类具有非线性耗散项的高阶Kirchhoff型方程的初边值问题.通过构造稳定集讨论了此问题整体解的存在性,应用Nakao的差分不等式建立了解能量的衰减估计.在初始能量为正的条件下,证明了解在有限时间内发生blow-up,并且给出了解的生命区间估计. | | 服务 | | | 加入引用管理器 | | E-mail Alert | | RSS | 收稿日期: 2016-11-16 | | 基金资助:国家自然科学基金(61273016,11171306,11571306);浙江省自然科学基金(LY17A010009);浙江省科技厅公益性技术应用研究课题资助项目(2015C33088)
| 作者简介: 叶耀军,E-mail:yjye2013@163.com;陶祥兴,E-mail:xxtau@163.com |
[1] Aliev A. B., Lichaei B. H., Existence and non-existence of global solutions of the Cauchy problem for higher order semilinear pseudo-hyperbolic equations, Nonlinear Anal. TMA, 2010, 72:3275-3288. [2] Autuori G., Pucci P., Salvatori M. C., Asymptotic stability for nonlinear Kirchhoff systems, Nonlinear Anal. RWA, 2009, 10:889-909. [3] Autuori G., Colasuonno F., Pucci P., Lifespan estimates for solutions of polyharmonic Kirchhoff systems, Math. Models Methods Appl. Sci., 2012, 22:1-36. [4] Autuori G., Colasuonno F., Pucci P., Blow up at infinity of solutions of polyharmonic Kirchhoff systems, Complex Var. Elliptic Equ., Special Volume dedicated to Prof. R. Gilbert, 2012, 57:379-395. [5] Autuori G., Pucci P., Salvatori M. C., Global Nonexistence for Nonlinear Kirchhoff Systems, Archive Rat. Mech. Anal., 2010, 196:489-516. [6] Autuori G., Pucci P., Local asymptotic stability for polyharmonic Kirchhoff systems, Appl. Anal., Special Volume dedicated to Prof. P. L. Butzer, 2011, 90:493-514. [7] Ball J. M., Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford, 1977, 28:473-486. [8] Bernner P., Von Whal W., Global classical solutions of nonlinear wave equations, Math. Z., 1981, 176:87-121. [9] Benaissa A., Messaoudi S. A., Blow-up of solutions for the Kirchhoff equation of q-Laplacian type with nonlinear dissipation, Colloquium Mathematicum, 2002, 94:103-109. [10] Galaktionov V. A., Pohozaev S. I., Blow-up and critical exponents for nonlinear hyperbolic equations, Nonlinear Anal. TMA, 2003, 53:453-466. [11] Gao Q., Li F., Wang Y., Blow-up of the solution for higher-order Kirchhoff-type equations with nonlinear dissipation, Cent. Eur. J. Math., 2011, 9:686-698. [12] Georgiev V., Todorova G., Existence of a solution of the wave equation with nonlinear damping and source terms, J. Differential Equations, 1994, 109:295-308. [13] Gorain G. C., Exponential energy decay estimates for the solutions of n-dimensional Kirchhoff type wave equation, Appl. Math. Comput., 2006, 177:235-242. [14] Hosoya M., Yamada Y., On some nonlinear wave equations II:global existence and energy decay of solutions, J. Fac. Sci. Univ. Toyko Sect. IA Math., 1991, 38:239-250. [15] Kirchhoff G., Vorlesungen über Mechanik, Teuber, Leipzig, 1883. [16] Levine H. A., Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, SIAM J. Math. Anal., 1974, 5:138-146. [17] Levine H. A., Serrin J., Global nonexistence theorems for quasilinear evolution equations wlth disspation, Arch. Rational Mech. Anal., 1997, 137:341-361. [18] Levine H. A., Park S. R., Serrin J., Global existence and global nonexistence of solutions of the Cauchy problem for a nonlinear damped wave equation, J. Math. Anal. Appl., 1998, 228:181-205. [19] Li F. C., Global existence and blow-up of solutions for a higher-order Kirchhoff-type equation with nonlinear dissipation, Appl. Math. Letters, 2004, 17:1409-1414. [20] Miao C. X., The time space estimates and scattering at low energy for nonlinear higher order wave equations, Acta Mathematica Sinica, Series A, 1995, 38:708-717. [21] Matsuyama T., Ikehata R., On global solutions and energy decay for the wave equations of Kirchhoff type with nonlinear damping terms, J. Math. Anal. Appl., 1996, 204:729-753. [22] Messaoudi S. A., Said Houari B., A blow-up result for a higher-order nonlinear Kirchhoff-type hyperbolic equation, Appl. Math. Lett., 2007, 20:866-871. [23] Nakao M., A difference inequality and its application to nonlinear evolution equations, J. Math. Soc. Japan, 1978, 30:747-762. [24] Nishihara K., Yamada Y., On global solutions of some degenerate quasilinear hyperbolic equations with dissipative terms, Funkcialaj Ekvacioj, 1990, 33:151-159. [25] Ohta M., Blow-up of solutions of dissipative nonlinear wave equations, Hokkaido Math. J., 1997, 26:115-124. [26] Ohta M., Remarks on blow-up of solutions for nonlinear evolution equations of second order, Adv. Math. Sci. Appl., 1998, 8:901-910. [27] Ono K., On global solutions and blow-up solutions of nonlinear Kirchhoff strings with nonlinear dissipation, J. Math. Anal. Appl., 1997, 216:321-342. [28] Ono K., On global existence, asymptotic stability and blowing up of solutions for some degenerate nonlinear wave equations of Kirchhoff type, Math. Meth. Appl. Sci, 1997, 20:151-177. [29] Ono K., On global existence, decay and blow-up of solutions for some mildly degenerate Kirchhoff strings, J. Differential Equations, 1997, 137:273-301. [30] Ono K., Blowing up and global existence of solutions for some degenerate nonlinear wave equations with some dissipation, Nonlinear Anal. TMA, 1997, 30:4449-4457. [31] Payne L. E., Sattinger D. H., Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 1975, 22:273-303. [32] Pata V., Zelik S., Smooth attractors for strongly damped wave equations, Nonlinearity, 2006, 19:1495-1506. [33] Pecher H., Die existenz reguläer Lösungen für Cauchy-und anfangs-randwertproble-me michtlinear wellengleichungen, Math. Z., 1974, 140:263-279. [34] Rammaha M. A., Sakuntasathien S., Global existence and blow up of solutions to systems of nonlinear wave equations with degenerate damping and source terms, Nonlinear Anal. TMA, 2010, 72:2658-2683. [35] Sattinger D. H., On global solutions for nonlinear hyperbolic equations, Arch. Rational Mech. Anal., 1968, 30:148-172. [36] Strauss W. A., On continuity of functions with values in various Banach spaces, Pacific J. Math., 1966, 19:543-551. [37] Vitillaro E., Global nonexistence theorems for a class of evolution equations with dissipation, Archive for Rational Mechanics and Analysis, 1999, 149:155-182. [38] Wang B. X., Nonlinear scattering theory for a class of wave equations in Hs, J. Math. Anal. Appl., 2004, 296:74-96. [39] Wu S. T., Tsai L. Y., Blow-up of solutions for some nonlinear wave equations of Kirchhoff type with some dissipation, Nonlinear Anal. TMA., 2006, 65:243-264. [40] Wu S. T., Tsai L. Y., Blow up of positive-initial-energy solutions for an integro-differential equation with nonlinear damping, Taiwanese J. Math., 2010, 14:2043-2058. [41] Ye Y. J., Existence and asymptotic behavior of global solutions for a class of nonlinear higher-order wave equation, Journal of Inequalities and Applications, 2010, 2010:1-14. [42] Zeng R., Mu C. L., Zhou S. M., A blow-up result for Kirchhoff-type equations with high energy, Math. Methods Appl. Sci., 2011, 34:479-486.
|
[1] | 丁丹平, 石敏, 毕云蕊. 广义超弹性杆方程解的爆破[J]. Acta Mathematica Sinica, English Series, 2009, 52(6): 1111-1118. | [2] | 舒级张健. 带调和势的非线性Schrodinger方程整体解存在的最佳条件[J]. Acta Mathematica Sinica, English Series, 2009, 25(4): 0-0. | [3] | 刘文军1王明新. 一类非线性退化波动方程解的爆破[J]. Acta Mathematica Sinica, English Series, 2008, 51(6): 1213-122. | [4] | 赵军生;柳洪志;. 非线性Klein-Gordon方程柯西问题解的整体存在性与Blow-up[J]. Acta Mathematica Sinica, English Series, 2008, 51(4): 711-720. | [5] | 伏升茂;高海燕;崔尚斌;. 竞争-竞争-互惠交错扩散模型的整体解[J]. Acta Mathematica Sinica, English Series, 2008, 51(1): 153-164. | [6] | 陶双平;陆善镇;. 半直线上修正Kawahara方程的初边值问题[J]. Acta Mathematica Sinica, English Series, 2007, 50(2): 241-254. | [7] | 伏升茂; 温紫娟; 崔尚斌(2. 三种群食物链交错扩散模型的整体[J]. Acta Mathematica Sinica, English Series, 2007, 50(1): 75-88. | [8] | 叶耀军;. 三维空间中半线性波动方程组的整体解和自相似解[J]. Acta Mathematica Sinica, English Series, 2006, 49(4): 927-940. | [9] | 甘在会;张健. 非线性Klein-Gordon方程整体解存在的最佳条件[J]. Acta Mathematica Sinica, English Series, 2005, 48(2): 311-318. | [10] | 崔国忠;江成顺;任华国. 具有吸收-反射边界的Boltzmann-Poisson输运模型的整体弱解[J]. Acta Mathematica Sinica, English Series, 2003, 46(5): 857-864. | [11] | 戴求亿;顾永耕. 关于猝灭问题的一些结果及其应用[J]. Acta Mathematica Sinica, English Series, 2003, 46(5): 985-992. | [12] | 王术. 一类半线性退化反应扩散方程组的有限行波解[J]. Acta Mathematica Sinica, English Series, 2003, 46(4): 733-738. | [13] | 刘辉昭;王光烈. 速度依赖于高斯曲率倒数的非参数曲面发展[J]. Acta Mathematica Sinica, English Series, 2002, 45(1): 43-58. | [14] | 刘亚成;辛洪学. Fujita型反应扩散方程组整体解的存在性、非存在性与渐近性质[J]. Acta Mathematica Sinica, English Series, 2000, 43(5): 847-854. | [15] | 杨万利;李有伟. 一类拟线性抛物系统解的整体存在性[J]. Acta Mathematica Sinica, English Series, 2000, 43(4): 711-718. |
|
PDF全文下载地址:
http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23528
Banach空间度量广义逆的乘积扰动杜法鹏1,薛以锋21.徐州工程学院数学与物理科学学院徐州221008;2.华东师范大学算子代数研究中心上海市核心数学与实践重点实验室华东师范大学数学科学学院上海200241MultiplicativePerturbationsofMetricGeneralized ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27渐近Teichmller空间的不唯一性黄志勇,周泽民中国人民大学数学系北京100872NonuniquenessPropertiesonAsymptoticTeichmullerSpaceZhiYongHUANG,ZeMinZHOUDepartmentofMathematics,Renm ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Hilbert空间上新的变分不等式问题和不动点问题的粘性迭代算法蔡钢重庆师范大学数学科学学院重庆401331ViscosityIterativeAlgorithmsforaNewVariationalInequalityProblemandFixedPointProbleminHilbertSpac ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27多复变中正规权Zygmund空间上的几个性质黎深莲,张学军湖南师范大学数学与统计学院长沙410006SeveralPropertiesontheNormalWeightZygmundSpaceinSeveralComplexVariablesShenLianLI,XueJunZHANGCollege ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27广义Fock空间上的Hankel算子王晓峰1,夏锦1,陈建军21.广州大学数学与信息科学学院广东高等学校交叉学科实验室广州510006;2.肇庆学院数学与统计学院肇庆526061HankelOperatorsonGeneralizedFockSpacesXiaoFengWANG1,JinXIA1,J ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27广义Segal-Bargmann空间上无界Toeplitz算子的交换王晓峰1,夏锦1,陈建军2,31广州大学数学与信息科学学院广东高等学校交叉学科实验室广州510006;2肇庆学院数学与统计学院肇庆526061;3中山大学数学学院广州510275CommutingToeplitzOperatorsa ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27类拟b-距离空间中几类循环压缩映射不动点定理司马傲蕾,贺飞,路宁内蒙古大学数学科学学院呼和浩特010021FixedPointTheoremsforSeveralCyclic-ContractiveMappingsinDislocatedQuasi-b-metricSpacesAoLeiSIMA,F ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Dirichlet空间上Bergman型Toeplitz算子的代数性质秦杰,刘柚岐,黄穗重庆师范大学数学科学学院重庆401331AlgebraicPropertiesofBergman-TypeToeplitzOperatorsontheDirichletSpaceJieQIN,YouQiLIU,S ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27伪自伴量子系统的酉演化与绝热定理黄永峰1,2,曹怀信1,王文华31陕西师范大学数学与信息科学学院西安710119;2昌吉学院数学系昌吉831100;3陕西师范大学民族教育学院西安710119UnitaryEvolutionandAdiabaticTheoremofPseudoSelf-adjoint ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27型C-Z算子在加权变指数Morrey空间上的有界性杨沿奇,陶双平西北师范大学数学与统计学院兰州730070Boundednessof-typeC-ZOperatorsonWeightedVariableExponentMorreySpacesYanQiYANG,Shuan ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|