删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

一类非线性高阶Kirchhoff型方程的初边值问题

本站小编 Free考研考试/2021-12-27

一类非线性高阶Kirchhoff型方程的初边值问题 叶耀军, 陶祥兴浙江科技学院数学与信息科学系 杭州 310023 Initial Boundary Value Problem for Higher-order Nonlinear Kirchhoff-type Equation Yao Jun YE, Xiang Xing TAODepartment of Mathematics and Information Science, Zhejiang University of Science and Technology, Hangzhou 310023, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(559 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文研究了一类具有非线性耗散项的高阶Kirchhoff型方程的初边值问题.通过构造稳定集讨论了此问题整体解的存在性,应用Nakao的差分不等式建立了解能量的衰减估计.在初始能量为正的条件下,证明了解在有限时间内发生blow-up,并且给出了解的生命区间估计.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2016-11-16
MR (2010):O175.2
基金资助:国家自然科学基金(61273016,11171306,11571306);浙江省自然科学基金(LY17A010009);浙江省科技厅公益性技术应用研究课题资助项目(2015C33088)
作者简介: 叶耀军,E-mail:yjye2013@163.com;陶祥兴,E-mail:xxtau@163.com
引用本文:
叶耀军, 陶祥兴. 一类非线性高阶Kirchhoff型方程的初边值问题[J]. 数学学报, 2019, 62(6): 923-938. Yao Jun YE, Xiang Xing TAO. Initial Boundary Value Problem for Higher-order Nonlinear Kirchhoff-type Equation. Acta Mathematica Sinica, Chinese Series, 2019, 62(6): 923-938.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2019/V62/I6/923


[1] Aliev A. B., Lichaei B. H., Existence and non-existence of global solutions of the Cauchy problem for higher order semilinear pseudo-hyperbolic equations, Nonlinear Anal. TMA, 2010, 72:3275-3288.
[2] Autuori G., Pucci P., Salvatori M. C., Asymptotic stability for nonlinear Kirchhoff systems, Nonlinear Anal. RWA, 2009, 10:889-909.
[3] Autuori G., Colasuonno F., Pucci P., Lifespan estimates for solutions of polyharmonic Kirchhoff systems, Math. Models Methods Appl. Sci., 2012, 22:1-36.
[4] Autuori G., Colasuonno F., Pucci P., Blow up at infinity of solutions of polyharmonic Kirchhoff systems, Complex Var. Elliptic Equ., Special Volume dedicated to Prof. R. Gilbert, 2012, 57:379-395.
[5] Autuori G., Pucci P., Salvatori M. C., Global Nonexistence for Nonlinear Kirchhoff Systems, Archive Rat. Mech. Anal., 2010, 196:489-516.
[6] Autuori G., Pucci P., Local asymptotic stability for polyharmonic Kirchhoff systems, Appl. Anal., Special Volume dedicated to Prof. P. L. Butzer, 2011, 90:493-514.
[7] Ball J. M., Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford, 1977, 28:473-486.
[8] Bernner P., Von Whal W., Global classical solutions of nonlinear wave equations, Math. Z., 1981, 176:87-121.
[9] Benaissa A., Messaoudi S. A., Blow-up of solutions for the Kirchhoff equation of q-Laplacian type with nonlinear dissipation, Colloquium Mathematicum, 2002, 94:103-109.
[10] Galaktionov V. A., Pohozaev S. I., Blow-up and critical exponents for nonlinear hyperbolic equations, Nonlinear Anal. TMA, 2003, 53:453-466.
[11] Gao Q., Li F., Wang Y., Blow-up of the solution for higher-order Kirchhoff-type equations with nonlinear dissipation, Cent. Eur. J. Math., 2011, 9:686-698.
[12] Georgiev V., Todorova G., Existence of a solution of the wave equation with nonlinear damping and source terms, J. Differential Equations, 1994, 109:295-308.
[13] Gorain G. C., Exponential energy decay estimates for the solutions of n-dimensional Kirchhoff type wave equation, Appl. Math. Comput., 2006, 177:235-242.
[14] Hosoya M., Yamada Y., On some nonlinear wave equations II:global existence and energy decay of solutions, J. Fac. Sci. Univ. Toyko Sect. IA Math., 1991, 38:239-250.
[15] Kirchhoff G., Vorlesungen über Mechanik, Teuber, Leipzig, 1883.
[16] Levine H. A., Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, SIAM J. Math. Anal., 1974, 5:138-146.
[17] Levine H. A., Serrin J., Global nonexistence theorems for quasilinear evolution equations wlth disspation, Arch. Rational Mech. Anal., 1997, 137:341-361.
[18] Levine H. A., Park S. R., Serrin J., Global existence and global nonexistence of solutions of the Cauchy problem for a nonlinear damped wave equation, J. Math. Anal. Appl., 1998, 228:181-205.
[19] Li F. C., Global existence and blow-up of solutions for a higher-order Kirchhoff-type equation with nonlinear dissipation, Appl. Math. Letters, 2004, 17:1409-1414.
[20] Miao C. X., The time space estimates and scattering at low energy for nonlinear higher order wave equations, Acta Mathematica Sinica, Series A, 1995, 38:708-717.
[21] Matsuyama T., Ikehata R., On global solutions and energy decay for the wave equations of Kirchhoff type with nonlinear damping terms, J. Math. Anal. Appl., 1996, 204:729-753.
[22] Messaoudi S. A., Said Houari B., A blow-up result for a higher-order nonlinear Kirchhoff-type hyperbolic equation, Appl. Math. Lett., 2007, 20:866-871.
[23] Nakao M., A difference inequality and its application to nonlinear evolution equations, J. Math. Soc. Japan, 1978, 30:747-762.
[24] Nishihara K., Yamada Y., On global solutions of some degenerate quasilinear hyperbolic equations with dissipative terms, Funkcialaj Ekvacioj, 1990, 33:151-159.
[25] Ohta M., Blow-up of solutions of dissipative nonlinear wave equations, Hokkaido Math. J., 1997, 26:115-124.
[26] Ohta M., Remarks on blow-up of solutions for nonlinear evolution equations of second order, Adv. Math. Sci. Appl., 1998, 8:901-910.
[27] Ono K., On global solutions and blow-up solutions of nonlinear Kirchhoff strings with nonlinear dissipation, J. Math. Anal. Appl., 1997, 216:321-342.
[28] Ono K., On global existence, asymptotic stability and blowing up of solutions for some degenerate nonlinear wave equations of Kirchhoff type, Math. Meth. Appl. Sci, 1997, 20:151-177.
[29] Ono K., On global existence, decay and blow-up of solutions for some mildly degenerate Kirchhoff strings, J. Differential Equations, 1997, 137:273-301.
[30] Ono K., Blowing up and global existence of solutions for some degenerate nonlinear wave equations with some dissipation, Nonlinear Anal. TMA, 1997, 30:4449-4457.
[31] Payne L. E., Sattinger D. H., Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 1975, 22:273-303.
[32] Pata V., Zelik S., Smooth attractors for strongly damped wave equations, Nonlinearity, 2006, 19:1495-1506.
[33] Pecher H., Die existenz reguläer Lösungen für Cauchy-und anfangs-randwertproble-me michtlinear wellengleichungen, Math. Z., 1974, 140:263-279.
[34] Rammaha M. A., Sakuntasathien S., Global existence and blow up of solutions to systems of nonlinear wave equations with degenerate damping and source terms, Nonlinear Anal. TMA, 2010, 72:2658-2683.
[35] Sattinger D. H., On global solutions for nonlinear hyperbolic equations, Arch. Rational Mech. Anal., 1968, 30:148-172.
[36] Strauss W. A., On continuity of functions with values in various Banach spaces, Pacific J. Math., 1966, 19:543-551.
[37] Vitillaro E., Global nonexistence theorems for a class of evolution equations with dissipation, Archive for Rational Mechanics and Analysis, 1999, 149:155-182.
[38] Wang B. X., Nonlinear scattering theory for a class of wave equations in Hs, J. Math. Anal. Appl., 2004, 296:74-96.
[39] Wu S. T., Tsai L. Y., Blow-up of solutions for some nonlinear wave equations of Kirchhoff type with some dissipation, Nonlinear Anal. TMA., 2006, 65:243-264.
[40] Wu S. T., Tsai L. Y., Blow up of positive-initial-energy solutions for an integro-differential equation with nonlinear damping, Taiwanese J. Math., 2010, 14:2043-2058.
[41] Ye Y. J., Existence and asymptotic behavior of global solutions for a class of nonlinear higher-order wave equation, Journal of Inequalities and Applications, 2010, 2010:1-14.
[42] Zeng R., Mu C. L., Zhou S. M., A blow-up result for Kirchhoff-type equations with high energy, Math. Methods Appl. Sci., 2011, 34:479-486.

[1]丁丹平, 石敏, 毕云蕊. 广义超弹性杆方程解的爆破[J]. Acta Mathematica Sinica, English Series, 2009, 52(6): 1111-1118.
[2]舒级张健. 带调和势的非线性Schrodinger方程整体解存在的最佳条件[J]. Acta Mathematica Sinica, English Series, 2009, 25(4): 0-0.
[3]刘文军1王明新. 一类非线性退化波动方程解的爆破[J]. Acta Mathematica Sinica, English Series, 2008, 51(6): 1213-122.
[4]赵军生;柳洪志;. 非线性Klein-Gordon方程柯西问题解的整体存在性与Blow-up[J]. Acta Mathematica Sinica, English Series, 2008, 51(4): 711-720.
[5]伏升茂;高海燕;崔尚斌;. 竞争-竞争-互惠交错扩散模型的整体解[J]. Acta Mathematica Sinica, English Series, 2008, 51(1): 153-164.
[6]陶双平;陆善镇;. 半直线上修正Kawahara方程的初边值问题[J]. Acta Mathematica Sinica, English Series, 2007, 50(2): 241-254.
[7]伏升茂; 温紫娟; 崔尚斌(2. 三种群食物链交错扩散模型的整体[J]. Acta Mathematica Sinica, English Series, 2007, 50(1): 75-88.
[8]叶耀军;. 三维空间中半线性波动方程组的整体解和自相似解[J]. Acta Mathematica Sinica, English Series, 2006, 49(4): 927-940.
[9]甘在会;张健. 非线性Klein-Gordon方程整体解存在的最佳条件[J]. Acta Mathematica Sinica, English Series, 2005, 48(2): 311-318.
[10]崔国忠;江成顺;任华国. 具有吸收-反射边界的Boltzmann-Poisson输运模型的整体弱解[J]. Acta Mathematica Sinica, English Series, 2003, 46(5): 857-864.
[11]戴求亿;顾永耕. 关于猝灭问题的一些结果及其应用[J]. Acta Mathematica Sinica, English Series, 2003, 46(5): 985-992.
[12]王术. 一类半线性退化反应扩散方程组的有限行波解[J]. Acta Mathematica Sinica, English Series, 2003, 46(4): 733-738.
[13]刘辉昭;王光烈. 速度依赖于高斯曲率倒数的非参数曲面发展[J]. Acta Mathematica Sinica, English Series, 2002, 45(1): 43-58.
[14]刘亚成;辛洪学. Fujita型反应扩散方程组整体解的存在性、非存在性与渐近性质[J]. Acta Mathematica Sinica, English Series, 2000, 43(5): 847-854.
[15]杨万利;李有伟. 一类拟线性抛物系统解的整体存在性[J]. Acta Mathematica Sinica, English Series, 2000, 43(4): 711-718.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23528
相关话题/数学 系统 空间 浙江科技学院 信息科学