删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

涉及导数与差分分担值的唯一性问题

本站小编 Free考研考试/2021-12-27

涉及导数与差分分担值的唯一性问题 邓炳茂1, 曾翠萍1, 刘丹2, 方明亮21. 广东金融学院金融数学与统计学院 广州 510521;
2. 华南农业大学应用数学研究所 广州 510642 Unicity of Mermorphic Functions Concerning Their Derivatives and Difference Bing Mao DENG1, Cui Ping ZENG1, Dan LIU2, Ming Liang FANG21. School of Financial Mathematics and Statistics, Guangdong University of Finance, Guangzhou 510521, P. R. China;
2. Institute of Applied Mathematics, South China Agricultural University, Guangzhou 510642, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(424 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文研究了有穷级亚纯函数的导数及其差分分担值的唯一性问题,主要证明了以下结论:如果f'与Δcf CM分担a,b,∞,则f'≡Δcf.该结论解决了Qi等人在2018年提出的问题.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2018-10-13
MR (2010):O174.2
基金资助:国家自然科学基金青年资助项目(11701188)
通讯作者:曾翠萍E-mail: ytxzcp@163.com
作者简介: 邓炳茂,E-mail:dbmao2012@163.com;刘丹,E-mail:liudan@scau.edu.cn;方明亮,E-mail:mlfang@scau.edu.cn
引用本文:
邓炳茂, 曾翠萍, 刘丹, 方明亮. 涉及导数与差分分担值的唯一性问题[J]. 数学学报, 2019, 62(5): 709-720. Bing Mao DENG, Cui Ping ZENG, Dan LIU, Ming Liang FANG. Unicity of Mermorphic Functions Concerning Their Derivatives and Difference. Acta Mathematica Sinica, Chinese Series, 2019, 62(5): 709-720.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2019/V62/I5/709


[1] Chen B. Q., Chen Z. X., Li S., Uniqueness theorems on entire functions and their difference operators or shifts, Abstr. Appl. Anal., 2012, 2012, Article ID 906893.
[2] Chen Z. X., Yi H. X., On sharing values of meromorphic functions and their differences, Result. Math., 2013, 63:557-565.
[3] Chiang Y. M., Feng S. J., On the Nevanlinna characteristic of f(z +η) and difference equations in the complex plane, Ramanujan J., 2008, 16(1):105-129.
[4] Cui N., Chen Z. X., The conjecture on unity of meromorphic functions concerning their differences, J. Difference Equ. Appl., 2016, 22(10):1452-1471.
[5] Halburd R. G., Korhonen R. J., Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl., 2006, 314(2):477-487.
[6] Halburd R. G., Korhonen R. J., Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn. Math., 2006, 31(2):463-478.
[7] Hayman W. K., Meromorphic Functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.
[8] Heittokangas J., Korhonen R., Laine I., et al., Value sharing results for shifts of meromorphic function, and sufficient conditions for periodicity, J. Math. Anal. Appl., 2009, 355:352-363.
[9] Li X. M., Yi H. X., Yang C. C., Results on meromorphic functions sharing three values with their difference operators, Bull. Korean Math. Soc., 2015, 52(5):1401-1422.
[10] Liu D., Yang D. G., Fang M. L., Unicity of entire functions concerning shifts and difference operators, Abstr. Appl. Anal., 2014, 2014, Article ID 380910.
[11] Lü F., Lü W. R., Meromorphic functions sharing three values with their difference operators, Comput. Methods Funct. Theory, 2017, 17:395-403.
[12] Qi X. G., Li N., Yang L. Z., Uniqueness of meromorphic functions concerning their differences and solutions of difference Painlevé equations, Comput. Methods Funct. Theory, 2018, 18(4):567-582.
[13] Yang C. C., Yi H. X., Uniqueness Theory of Meromorphic Functions, Mathematics and Its Applications, 557, Kluwer Academic Publishers Group, Dordrecht, 2003.
[14] Ruble L. A., Yang C. C., Values shared by an entire function and its derivative, In:Comples Analysis (Proc. Com. Univ. Kentnchy), Vol. 599, 1977:101-103.
[15] Yang L., Value Distribution Theory, Springer-Verlag, Berlin, 1993.
[16] Zhang J., Liao L. W., Entire functions sharing some values with their difference operators, Sci. China Math., 2014, 57:2143-2152.

[1]张美娟, 周珂. 带形上近临界随机游动的常返暂留性[J]. 数学学报, 2019, 62(5): 737-744.
[2]梁霄, Harish BHATT. 时空分数阶薛定谔方程的指数时间差分方法[J]. 数学学报, 2019, 62(4): 663-672.
[3]苏敏, 李玉华. 开平面C上的亚纯函数与完备极小曲面的Gauss映射[J]. 数学学报, 2019, 62(3): 515-520.
[4]曾翠萍, 邓炳茂, 方明亮. 复微分-差分方程组的整函数解[J]. 数学学报, 2019, 62(1): 123-136.
[5]高凌云, 刘曼莉. 一些差分—复合函数方程的亚纯解[J]. 数学学报, 2018, 61(5): 705-714.
[6]曾翠萍, 邓炳茂, 方明亮. 分担函数集的正规定则[J]. 数学学报, 2018, 61(4): 569-576.
[7]陈创鑫, 陈宗煊. 亚纯函数及其差分的唯一性[J]. 数学学报, 2016, 59(6): 821-834.
[8]高凌云. 两类复微分-差分方程组的整函数解[J]. 数学学报, 2016, 59(5): 677-684.
[9]王品玲, 刘丹, 方明亮. 亚纯函数差分的亏量与值分布[J]. 数学学报, 2016, 59(3): 357-362.
[10]高凌云. 一类复差分方程组的亚纯解[J]. 数学学报, 2016, 59(3): 363-368.
[11]刘慧芳, 毛志强. 整函数与其差分算子的唯一性定理[J]. Acta Mathematica Sinica, English Series, 2015, 58(5): 825-832.
[12]黄志波. 零级亚纯函数与多项式的复合函数的对数导数引理及其应用[J]. Acta Mathematica Sinica, English Series, 2015, 58(5): 765-772.
[13]张利. F(p,q,s)到Bμ广义复合算子的差分[J]. Acta Mathematica Sinica, English Series, 2015, 58(5): 815-824.
[14]仇惠玲. 一类分担有理函数的亚纯函数的唯一性[J]. Acta Mathematica Sinica, English Series, 2015, 58(4): 685-690.
[15]仇惠玲, 方彩云, 方明亮. 涉及例外函数与分担函数的正规族[J]. Acta Mathematica Sinica, English Series, 2015, 58(2): 345-352.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23491
相关话题/数学 广州 分数 广东金融学院 研究所