删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

推广的韩-刘-张反常消去公式

本站小编 Free考研考试/2021-12-27

推广的韩-刘-张反常消去公式 王勇, 吴彤东北师范大学数学与统计学院 长春 130024 Generalized Han-Liu-Zhang's Anomaly Cancellation Formulas Yong WANG, Tong WUSchool of Mathematics and Statistics, Northeast Normal University, Changchun 130024, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(510 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要在[Anomaly cancellation and modularity,Frontiersin Differential Geometry,Partial Differential Equations and Mathematical Physics,2014:87-104,World Sci.Publ.,Hackensack,NJ]中,韩-刘-张给出了一个反常消去公式,推广了Green-Schwarz公式和Schwartz-Witten公式.本文研究了两个推广的韩-刘-张公式和一个奇数维的韩-刘-张公式.通过研究一些示性式的模性质,给出了奇数维新的反常消去公式.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2018-11-09
MR (2010):O186.1
基金资助:国家自然科学基金资助项目(11771070)
作者简介: 王勇,E-mail:wangy581@nenu.edu.cn;吴彤,E-mail:1901827848@qq.com
引用本文:
王勇, 吴彤. 推广的韩-刘-张反常消去公式[J]. 数学学报, 2019, 62(5): 721-736. Yong WANG, Tong WU. Generalized Han-Liu-Zhang's Anomaly Cancellation Formulas. Acta Mathematica Sinica, Chinese Series, 2019, 62(5): 721-736.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2019/V62/I5/721


[1] Chandrasekharan K., Elliptic Functions, Spinger-Verlag, 1985.
[2] Chen Q., Han F., Modular invariance and twisted anomaly cancellations of characteristic numbers, Trans. Amer. Math. Soc., 2009, 361:1463-1493.
[3] Green M. B., Schwarz J. H., Anomaly cancellations in supersymmetric d=10 gauge theory and superstring theory, Physics Letters B, 1984, 149:117-122.
[4] Han F., Liu K., Zhang W., Anomaly cancellation and modularity, Frontiers in Differential Geometry, Partial Differential Equations and Mathematical Physics, 2014:87-104, World Sci. Publ., Hackensack, NJ.
[5] Han F., Liu K., Zhang W., Modular Forms and Generalized Anomaly Cancellation Formulas, J. Geom. Phys., 2012, 62(5):1038-1053.
[6] Han F., Yu J., On the Witten rigidity theorem for odd dimensional manifolds, arXiv:1504.03007.
[7] Han F., Zhang W., Modular invariance, characteristic numbers and eta Invariants, J. Diff. Geom., 2004, 67:257-288.
[8] Liu K., Modular invariance and characteristic numbers, Commu. Math. Phys., 1995, 174:29-42.
[9] Liu K., Wang Y., A note on modular forms and generalized anomaly cancellation formulas, Sci. China Math., 2013, 56(1):55-65.
[10] Liu K., Wang Y., Modular invariance and anomaly cancellation formulas in odd dimension, J. Geom. Phys., 2016, 99:190-200.
[11] Liu K., Wang Y., Modular invariance and anomaly cancellation formulas in odd dimension Ⅱ, Acta Math. Sin. Engl. Ser., 2017, 33(4):455-469.
[12] Schwarz J. H., Witten E., Anomaly analysis and brane-antibrane system, JHEP, 2001, 3, Paper 32, 26 pp.
[13] Zhang W., Lectures on Chern-weil Theory and Witten Deformations, Nankai Tracks in Mathematics, Vol. 4, World Scientific, Singapore, 2001.

[1]程新跃, 黄勤荣, 吴莎莎. 对偶平坦(α,β)-度量的共形不变性[J]. 数学学报, 2019, 62(3): 397-408.
[2]李明. Minkowski空间的等价性定理及在Finsler几何的应用[J]. 数学学报, 2019, 62(2): 177-190.
[3]聂昌雄, 于艳梅, 郑立荷. 具有平行的共形第二基本形式的类时超曲面[J]. Acta Mathematica Sinica, English Series, 2015, 58(6): 897-910.
[4]林勇, 满守东. 图上的Li-Yau不等式的一些注记[J]. Acta Mathematica Sinica, English Series, 2015, 58(6): 953-964.
[5]钟定兴, 谢显华, 陈海莲. Rn上具有三个主曲率的Laguerre等参超曲面[J]. Acta Mathematica Sinica, English Series, 2015, 58(2): 195-212.
[6]宗鹏, 肖琳, 刘会立. 三维欧氏空间的仿射乘积曲面[J]. Acta Mathematica Sinica, English Series, 2015, 58(2): 329-336.
[7]江苑珍, 潘恒. 指数型调和映射[J]. Acta Mathematica Sinica, English Series, 2015, 58(1): 131-140.
[8]李方方. Sn+p中Möbius第二基本形式平行的子流形的刚性定理[J]. Acta Mathematica Sinica, English Series, 2014, 57(6): 1081-1088.
[9]韦康. 紧致H-扭广义Calabi-Yau流形中形变的整体典范族[J]. Acta Mathematica Sinica, English Series, 2014, 57(5): 961-972.
[10]钟定兴, 张祖锦, 陶凌阳. Rn中具有平行Laguerre形式的超曲面[J]. Acta Mathematica Sinica, English Series, 2014, 57(5): 851-862.
[11]黄体仁. Carnot 群上严格非正态极值的存在性[J]. Acta Mathematica Sinica, English Series, 2014, 57(4): 745-750.
[12]钟定兴, 孙弘安, 张祖锦. Sn+1上具有三个互异常仿Blaschke特征值的超曲面[J]. Acta Mathematica Sinica, English Series, 2013, 56(5): 751-766.
[13]刘进. 子流形平均曲率向量场的线性相关性[J]. Acta Mathematica Sinica, English Series, 2013, 56(5): 669-686.
[14]陈方维. 几何测度空间基的研究[J]. Acta Mathematica Sinica, English Series, 2013, 56(3): 419-426.
[15]曾春娜, 周家足, 岳双珊. 两平面凸域的对称混合等周不等式[J]. Acta Mathematica Sinica, English Series, 2012, (2): 355-362.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23492
相关话题/数学 空间 东北师范大学 统计学院 公式