摘要本文借鉴Bressan和Constantin于2007年提出的新特征线法,利用具有强迫项的Dullin-Gottwald-Holm方程的平衡律和一些新的估计,证明了该方程在H1(R)中整体耗散解的存在性. | | 服务 | | | 加入引用管理器 | | E-mail Alert | | RSS | 收稿日期: 2017-04-25 | | 基金资助:国家自然科学基金基金资助项目(11871138,11771314)
| 作者简介: 李彬,E-mail:1669598681@qq.com;朱世辉E-mail:shihizhumath@163.com |
[1] Bressan A., Constantin A., Global dissipative solutions of the Camassa-Holm equation, Anal. Appl., 2007, 5:1-27. [2] Bressan A., Chen G., Zhang Q., Uniqueness of conservative solutions to the Camassa-Holm equation via characteristics, Discr. Cont. Dyn. Syst., 2015, 35:25-42. [3] Bressan A., Chen G., Zhang Q., Unique conservative solutions to a variational wave equation, Arch. Rat. Mech. Anal., 2015, 217:1069-1101. [4] Bressan A., Constantin A., Global conservative solutions of the Hunter-Saxton equation, SIAM J. Math. Anal., 2005, 37:996-1026. [5] Bressan A., Constantin A., Global conservative solutions to the Camassa-Holm equation, Arch. Rat. Mech. Anal., 2007, 183:215-239. [6] Constantin A., Lannes D., The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. Anal., 2009, 192:165-186. [7] Constantin A., Escher J., Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 1998, 181:229-243. [8] Constantin A., Escher J., Particle trajectories in solitary water waves, Bull. Amer. Math. Soc., 2007, 44:423-431. [9] Constantin A., McKean H. P., A shallow water equation on the circle, Comm. Pure Appl. Math., 1999, 52:949-982. [10] Constantin A., Molinet L., Orbital stability of solitary waves for a shallow water equation, Physica D, 2001, 157:75-89. [11] Chen G., Shen Y., Existence and regularity of solutions in nonlinear wave equations, Discr. Cont. Dyn. Syst., 2015, 35:3327-3342. [12] Danchin R., A few remarks on the Camassa-Holm equation, Differential and Integral Equations, 2000, 14:953-988. [13] Dullin H. R., Gottwald G. A., Holm D. D., An integrable shallow water equation with linear and nonlinear dispersion, Physical Review Letters, 2001, 87:194501. [14] Kato T., Quasi-linear equations of evolution, with applications to partial differential equations, Spectral Theory and Differential Equations, Springer, Berlin 1975:25-70. [15] Krishnan E. V., Khan Q. J. A., Lie group of transformations for a KdV-Boussinesq equation, Czechoslovak Journal of Physics, 2003, 53:99-105. [16] Li B., Zhu S. H., Leng L. H., Uniqueness of global weak solutions to the Dullin-Gottwald-Holm equation with a forcing term (in Chinese), Journal of Sichuan Normal University (Natural Science Edition), 2018, 2:159-168. [17] Li Y., Olver P., Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, Differential Equations, 2000, 162:27-63. [18] Liu Y., Global existence and blow-up solutions for a nonlinear shallow water equation, Mathematische Annalen, 2006, 335:717-735. [19] Tian L. X., Gui G., Liu Y., On the well-posedness problem and the scattering problem for the Dullin-Gottwald-Holm equation, Communications in Mathematical Physics, 2005, 257:667-701. [20] Xin Z., Zhang P., On the weak solutions to a shallow water equation, Comm. Pure Appl. Math., 2000, 53:1411-1433. [21] Xin Z., Zhang P., On the uniqueness and large time behavior of the weak solutions to a shallow water equation, Comm. Partial Differential Equations, 2002, 27:1815-1844. [22] Yin Z. Y., Global existence and blow-up for a periodic integrable shallow water equation with linear and nonlinear dispersion, Dynamics of Continuous Discrete and Impulsive Systems, 2005, 12:129. [23] Zhou Y., Blow-up of solutions to the DGH equation, Journal of Functional Analysis, 2007, 250:227-248. [24] Zhou Y., Guo Z., Blow up and propagation speed of solutions to the DGH equation, Discrete and Continuous Dynamical Systems Series B, 2009, 12:657-670. [25] Zhu S. H., Existence and uniqueness of global weak solutions of the Camassa-Holm equation with a forcing, Discr. Cont. Dyn. Syst., 2016, 36:5201-5221.
|
[1] | 薛晓琳, 刘存明. 拟线性双曲型方程组Cauchy问题行波解的稳定性[J]. 数学学报, 2016, 59(6): 745-760. | [2] | 刘见礼, 张小丹. 双层浅水波模型柯西问题的经典解[J]. Acta Mathematica Sinica, English Series, 2015, 58(6): 985-992. | [3] | 王剑苹, 吴少华. 趋化运动双曲模型弱解的存在唯一性[J]. Acta Mathematica Sinica, English Series, 2015, 58(6): 993-1000. | [4] | 徐润章, 张明有, 姜晓丽, 王雪梅, 沈继红. 基于交叉变分的非线性Klein-Gordon方程解的整体存在和爆破[J]. Acta Mathematica Sinica, English Series, 2014, 57(3): 427-444. | [5] | 刘存明, 刘见礼. 一阶拟线性双曲型方程组Goursat问题的整体经典解[J]. Acta Mathematica Sinica, English Series, 2013, 56(2): 145-154. |
|
PDF全文下载地址:
http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23494
关于电磁场方程组解的W1,p正则性研究陈志红,李东升西安交通大学数学与统计学院西安710049OnW1,pRegularityofASystemArisingfromElectromagneticFieldsZhiHongCHEN,DongShengLISchoolofMathematicsandS ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27具非自治微小扰动的脉冲方程三个古典解的存在性刘健1,赵增勤2,于文广31山东财经大学数学与数量经济学院济南250014;2曲阜师范大学数学科学学院曲阜273165;3山东财经大学保险学院济南250014TheExistenceofTripleClassicalSolutionstoImpulsive ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27状态依赖时滞非局部扩散方程的波前解万育基1,余志先1,2,孟艳玲31上海理工大学理学院上海200093;2上海师范大学数理学院上海200234;3上海理工大学管理学院上海200093TravelingWaveFrontsfortheNonlocalDispersalEquationwithState ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Smarandache函数的几类相关方程的解白海荣,廖群英四川师范大学数学与软件科学学院成都610066OntheSolutionsforSeveralClassesofEquationsRelatedtotheSmarandacheFunctionHaiRongBAI,QunYingLIAOIns ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27时标上具正负系数的三阶阻尼动力方程的振动性张萍1,杨甲山21.邵阳学院理学院,邵阳422004;2.梧州学院大数据与软件工程学院,梧州543002OscillationofThird-orderDampedDynamicEquationswithPositiveandNegativeCoeffici ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27二维具临界指数增长的椭圆方程基态解的存在性陈静湖南科技大学数学与计算科学学院,湘潭411201GroundStateSolutionsforEllipticEquationswithCriticalExponentialGrowthinR2CHENJingCollegeofMathematicsan ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27高维非线性抛物型方程在非线性边界通量作用下的爆破现象郭连红1,李远飞21.广州番禺职业技术学院,广州511483;2.广东财经大学华商学院,广州511300Blow-upPhenomenaforHigher-dimensionalNonlinearDivergenceFormParabolicEqu ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27一类含有p-Laplacian算子的脉冲微分方程解的存在性和多重性姚旺进应用数学福建省高校重点实验室,莆田学院数学与金融学院,莆田351100ExistenceandMultiplicityofSolutionsforaClassofImpulsiveDifferentialEquationswit ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27一类非瞬时脉冲发展方程解的存在性范虹霞1,汪婷婷21兰州交通大学数理学院,兰州730070;2陕西师范大学杨凌实验中学,咸阳712100ExistenceofSolutionsforaClassofNon-instantaneousImpulsiveEvolutionEquationsFANHong ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27变系数导热方程的Robin系数反演问题刘翻丽1,解金鑫2,杨涛21陕西师范大学杨凌实验中学,咸阳712000;2陕西师范大学杨凌实验中学,咸阳712000RobinCoefficientInversionProblemofVariableCoefficientHeatConductionEquati ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|