删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

具有强迫项Dullin-Gottwald-Holm,方程整体耗散解的存在性

本站小编 Free考研考试/2021-12-27

具有强迫项Dullin-Gottwald-Holm,方程整体耗散解的存在性 李彬1,2, 朱世辉31. 四川师范大学数学科学学院 成都 610066;
2. 绵阳中学实验学校 绵阳 626001;
3. 四川师范大学数学科学学院 成都 610066 Global Dissipative Solutions of the Dullin-Gottwald-Holm Equation with a Forcing Bin LI1,2, Shi Hui ZHU31. School of Mathematical Sciences, Sichuan Normal University, Chengdu 610066, P. R. China;
2. Mianyang Zhongxue Experimental School, Mianyang 626001, P. R. China;
3. School of Mathematical Sciences, Sichuan Normal University, Chengdu 610066, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(630 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要本文借鉴Bressan和Constantin于2007年提出的新特征线法,利用具有强迫项的Dullin-Gottwald-Holm方程的平衡律和一些新的估计,证明了该方程在H1(R)中整体耗散解的存在性.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2017-04-25
MR (2010):O175.27
基金资助:国家自然科学基金基金资助项目(11871138,11771314)
作者简介: 李彬,E-mail:1669598681@qq.com;朱世辉E-mail:shihizhumath@163.com
引用本文:
李彬, 朱世辉. 具有强迫项Dullin-Gottwald-Holm,方程整体耗散解的存在性[J]. 数学学报, 2019, 62(5): 745-764. Bin LI, Shi Hui ZHU. Global Dissipative Solutions of the Dullin-Gottwald-Holm Equation with a Forcing. Acta Mathematica Sinica, Chinese Series, 2019, 62(5): 745-764.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2019/V62/I5/745


[1] Bressan A., Constantin A., Global dissipative solutions of the Camassa-Holm equation, Anal. Appl., 2007, 5:1-27.
[2] Bressan A., Chen G., Zhang Q., Uniqueness of conservative solutions to the Camassa-Holm equation via characteristics, Discr. Cont. Dyn. Syst., 2015, 35:25-42.
[3] Bressan A., Chen G., Zhang Q., Unique conservative solutions to a variational wave equation, Arch. Rat. Mech. Anal., 2015, 217:1069-1101.
[4] Bressan A., Constantin A., Global conservative solutions of the Hunter-Saxton equation, SIAM J. Math. Anal., 2005, 37:996-1026.
[5] Bressan A., Constantin A., Global conservative solutions to the Camassa-Holm equation, Arch. Rat. Mech. Anal., 2007, 183:215-239.
[6] Constantin A., Lannes D., The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. Anal., 2009, 192:165-186.
[7] Constantin A., Escher J., Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 1998, 181:229-243.
[8] Constantin A., Escher J., Particle trajectories in solitary water waves, Bull. Amer. Math. Soc., 2007, 44:423-431.
[9] Constantin A., McKean H. P., A shallow water equation on the circle, Comm. Pure Appl. Math., 1999, 52:949-982.
[10] Constantin A., Molinet L., Orbital stability of solitary waves for a shallow water equation, Physica D, 2001, 157:75-89.
[11] Chen G., Shen Y., Existence and regularity of solutions in nonlinear wave equations, Discr. Cont. Dyn. Syst., 2015, 35:3327-3342.
[12] Danchin R., A few remarks on the Camassa-Holm equation, Differential and Integral Equations, 2000, 14:953-988.
[13] Dullin H. R., Gottwald G. A., Holm D. D., An integrable shallow water equation with linear and nonlinear dispersion, Physical Review Letters, 2001, 87:194501.
[14] Kato T., Quasi-linear equations of evolution, with applications to partial differential equations, Spectral Theory and Differential Equations, Springer, Berlin 1975:25-70.
[15] Krishnan E. V., Khan Q. J. A., Lie group of transformations for a KdV-Boussinesq equation, Czechoslovak Journal of Physics, 2003, 53:99-105.
[16] Li B., Zhu S. H., Leng L. H., Uniqueness of global weak solutions to the Dullin-Gottwald-Holm equation with a forcing term (in Chinese), Journal of Sichuan Normal University (Natural Science Edition), 2018, 2:159-168.
[17] Li Y., Olver P., Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, Differential Equations, 2000, 162:27-63.
[18] Liu Y., Global existence and blow-up solutions for a nonlinear shallow water equation, Mathematische Annalen, 2006, 335:717-735.
[19] Tian L. X., Gui G., Liu Y., On the well-posedness problem and the scattering problem for the Dullin-Gottwald-Holm equation, Communications in Mathematical Physics, 2005, 257:667-701.
[20] Xin Z., Zhang P., On the weak solutions to a shallow water equation, Comm. Pure Appl. Math., 2000, 53:1411-1433.
[21] Xin Z., Zhang P., On the uniqueness and large time behavior of the weak solutions to a shallow water equation, Comm. Partial Differential Equations, 2002, 27:1815-1844.
[22] Yin Z. Y., Global existence and blow-up for a periodic integrable shallow water equation with linear and nonlinear dispersion, Dynamics of Continuous Discrete and Impulsive Systems, 2005, 12:129.
[23] Zhou Y., Blow-up of solutions to the DGH equation, Journal of Functional Analysis, 2007, 250:227-248.
[24] Zhou Y., Guo Z., Blow up and propagation speed of solutions to the DGH equation, Discrete and Continuous Dynamical Systems Series B, 2009, 12:657-670.
[25] Zhu S. H., Existence and uniqueness of global weak solutions of the Camassa-Holm equation with a forcing, Discr. Cont. Dyn. Syst., 2016, 36:5201-5221.

[1]薛晓琳, 刘存明. 拟线性双曲型方程组Cauchy问题行波解的稳定性[J]. 数学学报, 2016, 59(6): 745-760.
[2]刘见礼, 张小丹. 双层浅水波模型柯西问题的经典解[J]. Acta Mathematica Sinica, English Series, 2015, 58(6): 985-992.
[3]王剑苹, 吴少华. 趋化运动双曲模型弱解的存在唯一性[J]. Acta Mathematica Sinica, English Series, 2015, 58(6): 993-1000.
[4]徐润章, 张明有, 姜晓丽, 王雪梅, 沈继红. 基于交叉变分的非线性Klein-Gordon方程解的整体存在和爆破[J]. Acta Mathematica Sinica, English Series, 2014, 57(3): 427-444.
[5]刘存明, 刘见礼. 一阶拟线性双曲型方程组Goursat问题的整体经典解[J]. Acta Mathematica Sinica, English Series, 2013, 56(2): 145-154.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23494
相关话题/数学 科学学院 四川师范大学 运动 方程