删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

具非自治微小扰动的脉冲方程三个古典解的存在性

本站小编 Free考研考试/2021-12-27

具非自治微小扰动的脉冲方程三个古典解的存在性 刘健1, 赵增勤2, 于文广31 山东财经大学数学与数量经济学院 济南 250014;
2 曲阜师范大学数学科学学院 曲阜 273165;
3 山东财经大学保险学院 济南 250014 The Existence of Triple Classical Solutions to Impulsive Problems with Small Non-autonomous Perturbations Jian LIU1, Zeng Qin ZHAO2, Wen Guang YU31 School of Mathematics and Quantitative Economics, Shandong University of Finance and Economics, Ji'nan 250014, P. R. China;
2 School of Mathematical Sciences, Qufu Normal University, Qufu 273165, P. R. China;
3 School of Insurance, Shandong University of Finance and Economics, Ji'nan 250014, P. R. China
摘要
图/表
参考文献
相关文章

全文: PDF(423 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要在半直线无穷区间上,我们研究具有微小非自治扰动项的脉冲方程边值问题的古典解,应用变分方法和相应的临界点理论得到了三个古典解的存在性.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2018-06-28
MR (2010):O175.14
基金资助:国家自然科学基金(11571197,11301303,11601269);教育部人文社会科学研究项目(16YJC630070);山东省自然科学基金(ZR2017MA048,ZR2018MG002);泰山****工程专项经费项目(tsqn20161041);山东省高等学校科技计划项目(J16LI11);山东省高等学校优势学科人才团队培育计划(1716009)和山东财经大学青年优秀人才支持计划
作者简介: 刘健,E-mail:liujianmath@163.com;赵增勤,E-mail:zqzhaoy@163.com;于文广,E-mail:yuwg@sdufe.edu.cn
引用本文:
刘健, 赵增勤, 于文广. 具非自治微小扰动的脉冲方程三个古典解的存在性[J]. 数学学报, 2019, 62(3): 441-448. Jian LIU, Zeng Qin ZHAO, Wen Guang YU. The Existence of Triple Classical Solutions to Impulsive Problems with Small Non-autonomous Perturbations. Acta Mathematica Sinica, Chinese Series, 2019, 62(3): 441-448.
链接本文:
http://www.actamath.com/Jwk_sxxb_cn/CN/ http://www.actamath.com/Jwk_sxxb_cn/CN/Y2019/V62/I3/441


[1] Chen H., Sun J., An application of variational method to second-order impulsive differential equation on the half-line, Appl. Math. Comput., 2010, 217:1863-1869.
[2] Bonanno G., Marano S. A., On the structure of the critical set of non-differentiable functions with a weak compactness condition, Appl. Anal., 2010, 89:1-10.
[3] Bonanno G., Riccobono G., Multiplicity results for Sturm-Liouville boundary value problems, Appl. Math. Comput., 2009, 210:294-297.
[4] Bonanno G., Chinn? A., Existence of three solutions for a perturbed two-point boundary value problem, Appl. Math. Lett., 2010, 23:807-811.
[5] Liu J., Zhao Z., Variational approach to existence of weak solutions to second-order singular impulsive problems, Acta Math. Sci. Ser. A, 2016, 36(3):521-530.
[6] Liu J., Zhao Z., Variational approach to second-order damped Hamiltonian systems with impulsive effects, J. Nonlinear Sci. Appl., 2016, 9:3459-3472.
[7] Liu J., Zhao Z., Existence of positive solutions to a singular boundary-value problem using variational methods, Electro. J. Differ. Equ., 2014, 135:1-9.
[8] Liu J., Zhao Z., An application of variational methods to second order impulsive differential equation with derivative dependence, Electro. J. Differ. Equ., 2014, 62:1-13.
[9] Liu J., Zhao Z., Existence of classical solutions to impulsive problems under Cerami condition, Acta Math. Sinica, Chin. Ser., 2016, 59(5):609-622.
[10] Nieto J., O'Regan D., Variational approach to impulsive differential equations, Nonlinear Anal., 2009, 10:680-690.
[11] Nieto J., Variational formulation of a damped Dirichlet impulsive problem, Appl. Math. Lett., 2010, 23:940-942.
[12] Sun J., Chen H., Variational method to the impulsive equation with Neumann boundary conditions, Bound.Value Probl., 2009, 2009, Article ID 316812, 17 pages.
[13] Tian Y., Ge W., Variational methods to Sturm-Liouville boundary value problem for impulsive differential equations, Nonlinear Anal., 2010, 72:277-287.
[14] Tian Y., Ge W., Applications of variational methods to boundary value problem for impulsive differential equations, Proc. Edinburgh Math. Soc., 2008, 51:509-527.

[1]张庆彩. 关于亚纯函数的奇异方向[J]. Acta Mathematica Sinica, English Series, 1988, 31(6): 777-785.
[2]张广厚. 关于亚纯函数的一般性定理及其应用[J]. Acta Mathematica Sinica, English Series, 1987, 30(3): 317-354.
[3]龚向宏. 亚纯函数的齐次微分多项式和幅角分布[J]. Acta Mathematica Sinica, English Series, 1987, 30(3): 378-389.
[4]陈怀惠. 对应于Hayman不等式的零级亚纯函数的奇异方向[J]. Acta Mathematica Sinica, English Series, 1987, 30(2): 234-237.
[5]杨乐;张广厚. 亚纯函数与其各级导数的亏值[J]. Acta Mathematica Sinica, English Series, 1982, 25(5): 617-625.
[6]杨乐;张广厚. 整函数的波莱耳方向的分布[J]. Acta Mathematica Sinica, English Series, 1976, 19(3): 157-168.



PDF全文下载地址:

http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23402
相关话题/山东财经大学 数学 学科 科学学院 保险