删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

相对表现视角下的再保险与投资策略

本站小编 Free考研考试/2021-12-27

杨鹏1,2,杨志江3
1. 西京学院理学院,西安 710123; 2. 西安交通大学数学与统计学院, 西安 710049; 3. 潍坊市工程技师学院电气系, 诸城 262233
出版日期:2021-02-25发布日期:2021-04-19




Reinsurance and Investment Strategies from the Perspective of Relative Performance

YANG Peng 1,2 ,YANG Zhijiang3
1. School of Science, Xijing University, Xi’an 710123; 2. School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049; 3. Department of Electrical, Weifang Engineering Technician College, Zhucheng 262233
Online:2021-02-25Published:2021-04-19







摘要



编辑推荐
-->


从相对表现视角, 量化了保险公司与再保险公司在签订再保险合约时的竞争, 进而研究了它引起的时间一致的再保险和投资策略选择问题. 保险公司的盈余过程满足复合泊松风险模型, 考虑投资时假设金融市场由一个无风险资产和$n$个相关的风险资产组成. 保险公司的研究目标是: 寻找最优再保险和投资策略最大化终止财富的均值, 同时最小化终止财富的方差. 该问题是时间不一致的, 文章从博弈的框架对其进行了研究. 应用随机控制理论, 求得了时间一致最优再保险和投资策略以及相应最优值函数的显式解. 进而, 得到了考虑相对表现时, 保险公司对再保险策略的修正方式, 同时得到了保险公司是否在某个具体风险资产上投资的准则. 最后, 通过理论分析和数值实验解释了模型参数对时间一致最优再保险和投资策略的影响, 得到了一些深刻的经济见解.

分享此文:


()


[1]黄晴,马世霞,李国柱. 基于损失规避行为的带有错误定价和VaR约束的最优投资和再保险问题[J]. 系统科学与数学, 2020, 40(10): 1790-1804.
[2]郭文旌. 基于损失规避行为的最优保险投资与再保策略选择[J]. 系统科学与数学, 2018, 38(9): 1005-1017.
[3]王远野,樊顺厚,常浩. 通胀风险与波动风险环境下带有保费返还条款的DC型养老金计划[J]. 系统科学与数学, 2018, 38(4): 423-437.
[4]杨鹏. Ornstein-Uhlenbeck模型的最优再保险和投资[J]. 系统科学与数学, 2016, 36(12): 2352-2359.
[5]甘柳,罗鹏飞,杨招军. 特质管理者决策下的企业投融资研究[J]. 系统科学与数学, 2016, 36(11): 1997-2006.
[6]马婧瑛,郑元世,王龙. 多智能体系统的性能优化[J]. 系统科学与数学, 2015, 35(3): 270-286.
[7]杨鹏. 均值-方差准则下CEV模型的最优投资和再保险[J]. 系统科学与数学, 2014, 34(9): 1100-1107.
[8]文平. 均值-方差准则及其应用[J]. 系统科学与数学, 2010, 30(4): 541-547.
[9]李可柏;陈森发. 城市水供需系统投资的鲁棒控制[J]. 系统科学与数学, 2010, 30(1): 22-032.
[10]曾燕;李仲飞. 基于监管的保险公司最优比例再保险策略[J]. 系统科学与数学, 2009, 29(11): 1496-1506.
[11]李仲飞 从建发. 最优多期比例再保险策略的必要条件[J]. 系统科学与数学, 2008, 28(11): 1354-1362.

-->

PDF全文下载地址:

http://sysmath.com/jweb_xtkxysx/CN/article/downloadArticleFile.do?attachType=PDF&id=14147
相关话题/系统 数学 科学 投资 资产