删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于最小最大鞅测度对保险公司最优投资再保险问题的研究

本站小编 Free考研考试/2021-12-27

基于最小最大鞅测度对保险公司最优投资再保险问题的研究 周子键, 陈旭湖南师范大学数学与统计学院, 长沙 410081 MiniMax Martingale Method for Optimal Investment-reinsurance Problem in a General Insurance Company Risk Model ZHOU ZiJian, CHEN XuSchool of Mathematics and Statistics, Hunan Normal University, Changsha 410081, China
摘要
图/表
参考文献
相关文章(8)
点击分布统计
下载分布统计
-->

全文: PDF(345 KB) HTML (0 KB)
输出: BibTeX | EndNote (RIS)
摘要本文研究既拥有保险公司又拥有再保险公司的大型保险机构的最优管理问题.保险公司可以购买比例再保险,保险公司和再保险公司均可以购买无风险资产和风险资产,大型保险机构的目标是最大化两公司资产加权和的指数效用.通过求解最小最大鞅测度,本文给出了指数效用函数对应的最优策略的精确解.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-08-26
PACS:60J75
91B30
基金资助:湖南省自然科学基金项目(2018JJ3328),湖南省教育厅重点项目(19A294)资助.

引用本文:
周子键, 陈旭. 基于最小最大鞅测度对保险公司最优投资再保险问题的研究[J]. 应用数学学报, 2021, 44(3): 407-417. ZHOU ZiJian, CHEN Xu. MiniMax Martingale Method for Optimal Investment-reinsurance Problem in a General Insurance Company Risk Model. Acta Mathematicae Applicatae Sinica, 2021, 44(3): 407-417.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2021/V44/I3/407


[1] Li D P, Rong X M, Zhao H. Optimal Reinsurance and Investment Problem for an Insurer and a Reinsurer with Jump-diffusion Risk Process under the Heston Model. Computational and Applied Mathematics, 2016, 35: 533–557
[2] Huang Y, Ouyang Y, Tang L X, Zhou J M. Robustoptimal Investment and Reinsurance Pproblem for the Product of the Insurer’s and Reinsurer’s Utilities. Journal of Computational and Applied Mathematics, 2018, 344: 532–552
[3] Chen P, Yam S C P. Optimal Proportional Reinsurance and Investment with Regime-switching for Mean-variance Insurers. Insurance: Mathematics and Economics, 2013, 53(3): 871–883
[4] Yi B, Li Zh F, Freder G Viens, Zeng Y. Robust Optimal Control for an Insurer with Reinsurance and Investment under Heston’s Stochastic Volatility Model. Insurance: Mathematics and Economics, 2013, 53(3): 601–614
[5] Gu AiL, Guo X P, Li Zh F, Zeng Y. Optimal Control of Excess-of-loss Reinsurance and Investment for Insurers under a CEV Model. Insurance: Mathematics and Economics, 2012, 51(3): 674–684
[6] Harrison J, Kreps D. Martingale and Arbitrage in Multiperiod Securities Markets. J.Econom.Theory, 1979, 20: 381–408
[7] Chen X, Wan J P. Option Pricing for Time-change Expoential Lévy Model under MEMM. Acta Mathematicae Applicatae Sinica,English Series, 2007, 23(4): 651–664
[8] Harrison J, Pliska S. Martingale and Stochastic Integrals in the Theory of Continuous Trading. Stochastic Processes and their Application, 1981, 11(3): 215–260
[9] Cox J C, Huang C F. Optimal Consumption and Portfolio Policies when Asset Prices follow a Diffusion Process. J. Econ. Theory, 1989, 49(1): 33–83
[10] Pliska S R. A Stochastic Calculus Model of Continuous Trading: Optimal Portfolios. Mathematics of Operations Research, 1986, 11(2): 371–382
[11] Chen Z, Li Z F, Zeng Y, Sun J Y. Asset Allocation under Loss Aversion and Minimum Performance Constraint in a DC Pension Plan with Inflation Risk. Insurance: Mathematics and Economics, 2017, 75: 137–150
[12] Tang Mei-Ling, Chen Son-Nan, Lai Gene C, Wu Ting-Pin. Asset Allocation for a DC Pension Fund under Stochastic Interest Rates and Inflation-Protected Guarantee. Insurance: Mathematics and Economics, 2018, 78: 87–104
[13] Zou B, Cadenillas A. Optimal Investment and Risk Control Policies for an Insurer: Expected Utility Maximization. Insurance: Mathematics and Economics, 2014, 58: 57–67
[14] Zhou J M, Yang X Q, Guo J Y. Portfolio Selection and Risk Control for an Insurer in the Lévy Market under Mean-variance Criterion. Statistics & Probability Letters, 2017, 126: 139–149
[15] He H, Pearson Neil D. Consumption and Portfolio Policies with Incomplete Markets and Short-sale Constraints: the Infinite Dimensional Case. Journal of Economic Theory, 1991, 54(2): 259–304
[16] Karatzas I, Lehoczky J, Shreve S, Xu G. Martingale and Duality Methods for Utility Maximization in an Incomplete Market. SIAM Journal of Control and Optimization, 1991, 29(3): 702–730
[17] Bellini F, Frittelli M. Certainty Equivalent and no Arbitrage: a Reconciliation via Duality Theory. Technical Report 139, Brescia University, 1997
[18] Bellini F, Frittelli M. On the Existence of Minimax Martingale Measures. Mathematical Finance,2002, 12(1): 1–21
[19] Goll T, Rüschendorf L. Minimax and Minimal Distance Martingale Measures and their Relationship to Portfolio Optimization. Finance and Stochastics, 2001, 5(4): 557–581
[20] Chen X, Zhuo W Y. Martingale and Duality Methods for Optimal Investment and Reinsurance Problem in a Lévy Model. Communications in Statistics-theory and Methods, 2020, 49(23): 5738– 5764
[21] Huên P. A Predictable Decomposition in an Infinite Assets Model with Jumps. Application to Hedging and Optimal Investment. Stochastics and Stochastics Reports, 2003, 75(5): 343-368

[1]姬新龙, 程文. 基于二维风险视角的预防性投资决策行为研究[J]. 应用数学学报, 2021, 44(4): 589-602.
[2]费晨. G-布朗运动驱动随机系统的最优控制和最优消费投资组合[J]. 应用数学学报, 2021, 44(3): 355-382.
[3]王莹, 黄文礼, 杨晨, 李胜宏, 郑大厚. 生产状态转移对代理人问题和公司投资的影响[J]. 应用数学学报, 2017, 40(5): 653-666.
[4]林祥, 李艳方. 跳-扩散风险模型的最优投资和再保险策略[J]. 应用数学学报(英文版), 2013, 36(5): 791-802.
[5]谷爱玲, 李仲飞, 曾燕. Ornstein-Uhlenbeck模型下DC养老金计划的最优投资策略[J]. 应用数学学报(英文版), 2013, 36(4): 715-726.
[6]肖晴初. 基于Pareto最优风险转换的联合共保模型及其破产概率[J]. 应用数学学报(英文版), 2011, 34(4): 618-633.
[7]常浩, 荣喜民. 随机参数和随机资金流环境下基于二次效用函数的投资组合优化[J]. 应用数学学报(英文版), 2011, 34(4): 703-711.
[8]程兵, 魏先华. 常数比例投资组合保险(CPPI)策略-捐赠型基金投资策略的最优选择[J]. 应用数学学报(英文版), 2005, 28(3): 396-404.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14914
相关话题/应用数学 公司 投资 资产 统计