摘要本文主要研究状态依赖时滞非局部扩散方程的波前解,当出生函数单调时,可以得到单调行波解的存在性和非存在性,然后,由先验估计和Ikehara定理,进一步得到临界波前解的渐近性;当出生函数非单调时,通过引进两个辅助拟单调方程,也可以得到相应非拟单调条件下的存在性结果. | | 服务 | | | 加入引用管理器 | | E-mail Alert | | RSS | 收稿日期: 2018-06-19 | | 基金资助:上海自然科学基金资助项目(18ZR1426500)
| 通讯作者:余志先E-mail: zxyu0902@163.com | 作者简介: 万育基,E-mail:yjwan0530@163.com;孟艳玲,E-mail:ylmeng0321@163.com |
[1] Aiello W. G., Freedman H. I., Wu J., Analysis of a model representing stage-structured population growth with state-dependent time delay, SIAM J. Appl. Math., 1992, 52(3):855-869. [2] Al-Omari J., Gourley S., Dynamics of a stage-structured population model incorporating a state-dependent maturation delay, Nonlinear Anal. Real World Appl., 2005, 6(1):13-33. [3] Al-Omari J., Tallafha A., Modelling and analysis of stage-structured population model with state-dependent maturation delay and harvesting, Int. J. Math. Analysis, 2007, 1(8):391-407. [4] Alt W., Some periodicity criteria for functional differential equations, Manuscripta Math., 1978, 23(3):295-318. [5] Alt W., Periodic Solutions of some Autonomous Differential Equations with Variable Time Delay, In:Functional Differential Equations and Appr. of Fixed Points, Lecture Notes in Math., 730, Springer, Berlin, 1979, 16-31. [6] Andrewartha H. G., Birch L. C., The Distribution and Abundance of Animals, University of Chicago Press, Chicago, IL, 1954. [7] Arino O., Hadeler K. P., Hbid M. L., Existence of periodic solutions for delay differential equations with state dependent delay, J. Differential Equation, 1998, 144(2):263-301. [8] Bates P. W., Fife P. C., Ren X., et al., Travelling waves in a convolution model for phase transition, Arch. Rational Mech. Anal., 1997, 138(2):105-136. [9] Carr J., Chmaj A., Uniqueness of travelling waves for nonlocal monostable equations, Proc. Amer. Math. Soc., 2004, 132(8):2433-2439. [10] Coville J., On uniqueness and monotonicity of solutions of nonlocal reaction diffusion equation, Ann. Mat. Pura Appl., 2006, 185(3):461-485. [11] Coville J., Dupaigne L., On a non-local equation arising in population dynamics, Proc. Roy. Soc. Edinburgh, 2007, 137(4):727-755. [12] Driver R. D., Existence theory for a delay-differential system, Contrib. Differential Equations, 1963, 1:317-336. [13] Gambell R., Bonner W. N., Walton D. W. H., Birds and Mammals-Antarctic Whales, in Antarctica, New York, 1985, 223-241. [14] Hale J. K., Verduyn Lunel S. M., Theory of Functional Differential Equations, Springer, New York, 1993. [15] Hartung F., Krisztin T., Walther H. O., et al., Functional diferential equations with state-dependent delays:Theory and applications, In:Handbook of Differential Equations:Ordinary Differential Equations, Elsevier, 2006, 435-545. [16] Krisztin T., Rezounenko A., Parabolic partial differential equations with discrete state-dependent delay:Classical solutions and solution manifold, J. Differential Equations, 2016, 260(5):4454-4472. [17] Lee C. T., Hoopes M. F., Diehl J., et al., Non-local concepts in models in biology, J. Theor. Biol., 2001, 210(2):201-219. [18] Lin G., Wang H. Y., Traveling wave solutions of reaction-diffusion equation with state-dependent delay, Comm. Pure Appl. Anal., 2016, 15(2):319-334. [19] Lutscher F., Lewis M., Spatially-explicit matrix models a mathematical analysis of stage-structured integrodifference equations, J. Math. Biol., 2004, 48(3):293-324. [20] Medlock J., Kot M., Spreading disease:integro-differential equations old and new, Math. Biosci., 2003, 184(2):201-222. [21] Lv Y., Yuan R., He Y., Wavefronts of a stage structured model with state-dependent delay, Discrete Contin. Dyn. Syst., 2015, 35(10):4931-4954. [22] Lv Y., Yuan R., Pei Y., Smoothness of semiflows for parabolic partial differential equations with statedependent delay, J. Differential Equations, 2016, 260(7):6201-6231. [23] Mallet-Paret J., Nussbaum R. D., Boundary layer phenomena for differential-delay equations with statedependent time lags I, Arch. Rational Mech. Anal., 1992, 120(120):99-146. [24] Mallet-Paret J., Nussbaum R. D., Boundary layer phenomena for differential-delay equations with statedependent time lags Ⅱ, J. Reine Angew. Math., 1996, 477:129-197. [25] Mallet-Paret J., Nussbaum R. D., Paraskevopoulos P., Periodic solutions for functional-differential with multiple state dependent time lags, Topol. Methods Nonlinear Anal., 1994, 3(1):101-162. [26] Pan S., Li W. T., Lin G., Traveling wave fronts in nonlocal reaction-diffusion systems and applications, Z. Angew. Math. Phys, 2009, 60(3):377-392. [27] Walther H. O., Stable periodic motion of a system with state dependent delay, Differential Integral Equations, 2002, 15(8):923-944. [28] Walther H. O., The solution manifold and C1-smoothness for differential equations with state-dependent delay, J. Differential Equations, 2003, 195(1):46-65. [29] Widder D. V., The Laplace Transform, Princeton University Press, Princeton, 1941. [30] Wu J., Theory and Applications of Partial Functional Differential Equations, Springer, New York, 1996. [31] Zhang G. B., Traveling waves in a nonlocal dispersal population model with age-structure, Nonlinear Anal., 2011, 74(15):5030-5047. [32] Zhang G. B., Ma R. Y., Spreading speeds and traveling waves for a nonlocal dispersal equation with convolution-type crossing-monostable nonlinearity, Z. Angew. Math. Phys, 2014, 65(5):819-844. [33] Yu Z. X., Yuan R., Traveling waves of a nonlocal dispersal delayed age-structured population model, Japan J. Indust. Appl. Math., 2013, 30(1):165-184. [34] Yu Z. X., Yuan R., Existence, asymptotic and uniqueness of traveling waves for nonlocal diffusion systems with delayed nonlocal response, Taiwanese J. Math., 2013, 17(6):2163-2190.
|
[1] | 郭彦平;葛渭高;朱玉峻. 二阶奇异非线性边值条件的上下解方法[J]. Acta Mathematica Sinica, English Series, 2003, 46(5): 1007-101. | [2] | 史永东. 液态金属流的表面张力问题中的两点边值问题解的存在性[J]. Acta Mathematica Sinica, English Series, 1998, 41(5): -. | [3] | 黄少云. 关于非均质水坝问题[J]. Acta Mathematica Sinica, English Series, 1988, 31(1): 137-144. |
|
PDF全文下载地址:
http://www.actamath.com/Jwk_sxxb_cn/CN/article/downloadArticleFile.do?attachType=PDF&id=23406
一类核反应堆数学模型正解的全局分歧陈瑞鹏,李小亚北方民族大学数学与信息科学学院,银川750021GlobalBifurcationofPositiveSolutionsofaMathematicalModelArisingInNuclearEngineeringCHENRuipeng,LIXiaoy ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-271月7日,中科院发布2020年度科技创新亮点成果,物理所“在磁性外尔半金属中首次提出‘自旋轨道极化子’新概念”成果入选其中。 物理所高鸿钧院士研究团队与合作者在国际上首个具有内禀磁性的外尔费米子体系中发现“自旋轨道极化子”。他们利用自主设计组装的国际顶尖水平的极低温-强磁场-扫描隧道显微系统,在磁 ... 中科院物理研究所 本站小编 Free考研考试 2021-12-27陈立轩1,赵思佳1,李秀婷1,2,董纪昌1,21.中国科学院大学经济与管理学院,北京100190;2.中国科学院大数据挖掘与知识管理重点实验室,北京100190出版日期:2021-11-25发布日期:2021-12-25SimulationModelConstructionofCommercialR ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27王秋萍,郭佳丽,王晓峰西安理工大学理学院,西安710054出版日期:2021-05-25发布日期:2021-08-11AChaoticMothFlameOptimizationAlgorithmBasedonDimensionLearningandQuadraticInterpolationWANG ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27蔡川,程铭,苏伟,李辉,徐月霞兰州大学信息科学与工程学院,兰州730000出版日期:2016-11-25发布日期:2017-01-18LINEARINPUTMETHODSFORMATHEMATICALFORMULACAIChuan,CHENGMing,SUWei,LIHui,XUYuexiaScho ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27孟志青1,沈瑞1,党创寅2,蒋敏31.浙江工业大学经贸管理学院,杭州310023;2.香港城市大学系统工程与工程管理系,香港;3.浙江工业大学经贸管理学院,杭州310023出版日期:2016-01-25发布日期:2016-03-02ABARRIEROBJECTIVEPENALTYFUNCTIONAL ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27中文关键词:MOFs材料除氟吸附剂动力学热力学英文关键词:MOFsmaterialsDefluorinationAdsorbentDynamicsThermodynamics基金项目:国家自然科学基金项目(51406141)、福建省自然科学基金项目(2019J01829、2019J01830、202 ... 中科院化学研究所 本站小编 Free考研考试 2021-12-27中文关键词:二氧化钛非金属元素掺杂能带结构光电转化光催化英文关键词:TitaniumdioxideNon-metaldopingBandgapstructurePhotoelectricconversionPhotocatalysis基金项目:国家自然科学基金项目(21773310)和山东省重点研发 ... 中科院化学研究所 本站小编 Free考研考试 2021-12-27中文关键词:贵金属钌负载催化剂氨合成加氢反应氧化反应英文关键词:PreciousmetalrutheniumSupportedcatalystAmmoniasynthesisHydrogenationOxidation基金项目:贵州省高层次创新型“百”层次人才项目(20165673)、贵州省科研机构 ... 中科院化学研究所 本站小编 Free考研考试 2021-12-27中文关键词:电化学传感器金属有机骨架材料环丙沙星水产品英文关键词:ElectrochemicalsensorMetalorganicframeworkmaterialCiprofloxacinAquaticproduct基金项目:“十三五”国家重点研发计划项目(2019YFD0901702)、辽宁省 ... 中科院化学研究所 本站小编 Free考研考试 2021-12-27
|