删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

用伸缩变换群分析法探究群体平衡方程的自相似解

本站小编 Free考研考试/2021-12-27

用伸缩变换群分析法探究群体平衡方程的自相似解 林府标, 张千宏贵州财经大学数统学院, 贵阳 550025 Self-similar Solutions of the Population Balance Equation, Using Scaling Group Analysis LIN Fubiao, ZHANG QianhongSchool of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang 550025, China
摘要
图/表
参考文献
相关文章(2)
点击分布统计
下载分布统计
-->

全文: PDF(464 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要改进了的李群分析方法用于积分-偏微分方程(群体平衡方程)十分复杂,问题的本质在于求解积分-偏微分方程的决定方程既棘手又困难,探究决定方程的方法依赖于原积分-偏微分方程本身的结构特征和性质.相反,采用伸缩变换群分析方法探索积分-偏微分方程的自相似解既简单又方便.论文利用伸缩变换群分析方法研究了积分-偏微分方程,获得了积分-偏微分方程的显式真实解、自相似解和约化的积分-常微分方程.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2020-01-09
PACS:O175.6
基金资助:国家自然科学基金(11761018;11361012),贵州省科技计划基金项目(黔科合基础[2019]1051);贵州省科技厅科学技术基金([2020]1Y008);贵州省教育厅青年科技人才成长项目(黔教合KY字[2017]150);2018年度贵州财经大学校级科研基金项目资助(2018XYB04);贵州财经大学创新探索及学术新苗项目(黔科合平台人才[2017]5736-020

引用本文:
林府标, 张千宏. 用伸缩变换群分析法探究群体平衡方程的自相似解[J]. 应用数学学报, 2020, 43(5): 833-852. LIN Fubiao, ZHANG Qianhong. Self-similar Solutions of the Population Balance Equation, Using Scaling Group Analysis. Acta Mathematicae Applicatae Sinica, 2020, 43(5): 833-852.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2020/V43/I5/833


[1] Ramkrishna D. Population balances:theory and applications to particulate systems in engineering. San Diego:Academic Press, 2000
[2] Hulburt H M, Katz S. Some problems in particle technology. A statistical mechanical formulation. Chem. Eng. Sci., 1964, 19:555-574
[3] Randolph A D. A population balance for countable entities. Canadian J. Chem. Eng., 1964, 42(6):280-281
[4] Randolph A D, Larson M A. Theory of particulate processes:analysis and techniques of continuous crystallization, second edition. San Diego:Academic Press, 1988
[5] Yeoh G H, Cheung C P, Tu J Y. Multiphase flow analysis using population balance modeling:bubbles, drops and particles. Amsterdam:Elsevier Science, 2014
[6] Ramkrishna D, Singh M R. Population balance modeling:current status and future prospects. Annu. Rev. Chem. Biomol. Eng., 2014, 5:123-146
[7] Wang K Y, Yu S Y, Peng W. Extended log-normal method of moments for solving the population balance equation for Brownian coagulation. Aerosol Sci. Tech., 2019, 53(3):332-343
[8] Wang K Y, Peng W, Yu S Y. A new approximation approach for analytically solving the population balance equation due to thermophoretic coagulation. J. Aerosol Sci., 2019, 128:125-137
[9] Cameron I T, Wang F Y, Immanuel C D, Stepanek F. Process systems modelling and applications in granulation:A review. Chem. Eng. Sci., 2005, 60(14):3723-3750
[10] Drake R L. A general mathematical survey of the coagulation equation, topics in current aerosol research, part 2. Int. Rev. Aerosol Phys. Chem., 1972, 3:201-376
[11] Aldous D J. Deterministic and stochastic models for coalescence (aggregation and coagulation):a review of the mean-field theory for probabilists. Bernoulli, 1999, 5(1):3-48
[12] Fournier N, Laurençot P. Well-posedness of smoluchowski's coagulation equation for a class of homogeneous kernels. J. Funct. Anal., 2006, 233(2):351-379
[13] Smit D J, Hounslow M J, Paterson W R. Aggregation and gelation-I. Analytical solutions for CST and batch operation. Chem. Eng. Sci., 1994, 49(7):1025-1035
[14] Hidy G M, Brock J R. Topics in current aerosol research, part 2, first edition. New York:Pergamon Press, 1972
[15] Deryagin B V. Research in surface forces. New York:Springer, 1971
[16] Trubnikov B A. Solution of the coagulation equations in the case of a bilinear coefficient of adhesion of particles. Soviet Physics Doklady, 1971, 16:124-125
[17] Spouge J L. Solutions and critical times for the monodisperse coagulation equation when a(i,j)=A+B(i+j)+Cij. J. Phys. A Math. Gen., 1983, 16(4):767-773
[18] Spouge J L. Solutions and critical times for the polydisperse coagulation equation when a(x,y)=A+B(x+y)+Cxy. J. Phys. A Math. Gen., 1983, 16(13):3127-3132
[19] Van Dongen P G J, Ernst M H. Size distribution in the polymerisation model AfRBg. J. Phys. A Math. Gen., 1984, 17(17):2281-2297
[20] Kumar S, Ramkrishna D. On the solution of population balance equations by discretization-III. Nucleation, growth and aggregation of particles. Chem. Eng. Sci., 1997, 52(24):4659-4679
[21] Müller H. Zur allgemeinen Theorie ser raschen Koagulation. Fortschrittsberichte über Kolloide Und Polymere, 1928, 27(6):223-250(in German)
[22] Smoluchowski M Z. Versuch einer mathematischen theorie der koagulation rinetisch kolloider lösungen. Zeit. Phys. Chem., 1917, 92:129-168(in German)
[23] Schumann T E W. Theoretical aspects of the size distribution of fog particles. Quart. J. Roy. Meteorol. Soc., 1940, 66(285):195-208
[24] Scott W T. Analytic studies of cloud droplet coalescence I. J. Atmos. Sci., 1968, 25(1):54-65
[25] Filbet F, Laurençot P. Numerical simulation of the Smoluchowski coagulation equation. SIAM J. Sci. Comput., 2004, 25(6):2004-2028
[26] Ernst M H, Ziff R M, Hendriks E M. Coagulation processes with a phase transition. J. Colloid Interface Sci., 1984, 97(1):266-277
[27] 田畴. 李群及其在微分方程中的应用. 北京:科学出版社, 2001(Tian C. Lie group and its applications in differential equations. Beijing:Science Press, 2001)
[28] Lie S. Theory of transformation groups I, general properties of continuous transformation groups, a contemporary approach and translation, editor and translator:Jool Merker. New York:Springer, 2015
[29] Ibragimov N H. CRC handbook of Lie group analysis of differential equations Volume 1, symmetries exact solutions and conservation laws. Boca Raton:CRC Press, 1994
[30] Olver P J. Applications of Lie groups to differential equations, 2nd edition. New York:Springer, 1993
[31] Bluman G W, Kumei S. Symmetries and differential equations. Berlin:Springer, 1989
[32] Ovsiannikov L V. Group analysis of differential equations. Moscow:Nauka, 1978, English translation, Ames, W. F., Ed., New York:Academic Press, 1982.
[33] Meleshko S V. Methods for constructing exact solutions of partial differential equations:mathematical and analytical techniques with applications to engineering. New York:Springer, 2005
[34] Grigoriev Y N, Ibragimov N H, Kovalev V F, Meleshko S V. Symmetries of integro-differential equations:with applications in mechanics and plasma physics. New York:Springer, 2010
[35] Suriyawichitseranee A, Grigoriev Y N, Meleshko S V. Group analysis of the Fourier transform of the spatially homogeneous and isotropic Boltzmann equation with a source term. Commun. Nonlinear Sci. Numer. Simulat., 2015, 20(3):719-730
[36] Zhou L Q, Meleshko S V. Group analysis of integro-differential equations describing stress relaxation behavior of one-dimensional viscoelastic materials. Int. J. Non-Linear Mech., 2015, 77:223-231
[37] Zhou L Q, Meleshko S V. Invariant and partially invariant solutions of integro-differential equations for linear thermoviscoelastic aging materials with memory. Contin. Mech. Thermodyn., 2017, 29(1):207-224
[38] Zhou L Q, Meleshko S V. Symmetry groups of integro-differential equations for linear thermoviscoelastic materials with memory. J. Appl. Mech. Tech. Phys., 2017, 58(4):587-609
[39] Lin F B, Flood A E, Meleshko S V. Exact solutions of population balance equation. Commun. Nonlinear Sci. Numer. Simulat., 2016, 36:378-390
[40] Lin F B, Meleshko S V, Flood A E. Symmetries of population balance equations for aggregation, breakage and growth processes. Appl. Math. Comput., 2017, 307:193-203
[41] Lin F B, Meleshko S V, Flood A E. Exact solutions of the population balance equation including particle transport, using group analysis. Commun. Nonlinear Sci. Numer. Simulat., 2018, 59:255-271
[42] Long F S, Karnbanjong A, Suriyawichitseranee A, Grigoriev Y N, Meleshko S V. Application of a Lie group admitted by a homogeneous equation for group classification of a corresponding inhomogeneous equation. Commun. Nonlinear Sci. Numer. Simulat., 2017, 48:350-360
[43] Ibragimov N H, Meleshko S V, Rudenko O V. Group analysis of evolutionary integro-differential equations describing nonlinear waves:the general model. J. Phys. A Math. Theor., 2011, 44:1-21
[44] Grigorev Y N, Meleshko S V, Suriyawichitseranee A. Exact solutions of the Boltzmann equations with a source. J. Appl. Mech. Tech. Phys., 2018, 59(2):189-196
[45] Ibragimov N H, Kovalev V F, Pustovalov V V. Symmetries of integro-differential equations:a survey of methods illustrated by the Benny equations. Nonlinear Dynamics, 2002, 28(2):135-153
[46] Leyvraz F, Tschudi H R. Singularities in the kinetics of coagulation processes. J. Phys. A, 1981, 14:3389-3405

[1]杨明华. 齐次Fourier-Besov-Morrrey空间上MHD的存在性和渐近稳定性[J]. 应用数学学报, 2016, 39(5): 748-761.
[2]李健全, 陈任昭. 时变种群扩散系统最优生育率控制的非线性问题[J]. 应用数学学报(英文版), 2002, 25(4): 626-641.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14822
相关话题/贵州财经大学 应用数学 统计 控制 论文