摘要改进了的李群分析方法用于积分-偏微分方程(群体平衡方程)十分复杂,问题的本质在于求解积分-偏微分方程的决定方程既棘手又困难,探究决定方程的方法依赖于原积分-偏微分方程本身的结构特征和性质.相反,采用伸缩变换群分析方法探索积分-偏微分方程的自相似解既简单又方便.论文利用伸缩变换群分析方法研究了积分-偏微分方程,获得了积分-偏微分方程的显式真实解、自相似解和约化的积分-常微分方程. | | 服务 | | | 加入引用管理器 | | E-mail Alert | | RSS | 收稿日期: 2020-01-09 | | 基金资助:国家自然科学基金(11761018;11361012),贵州省科技计划基金项目(黔科合基础[2019]1051);贵州省科技厅科学技术基金([2020]1Y008);贵州省教育厅青年科技人才成长项目(黔教合KY字[2017]150);2018年度贵州财经大学校级科研基金项目资助(2018XYB04);贵州财经大学创新探索及学术新苗项目(黔科合平台人才[2017]5736-020 |
[1] | Ramkrishna D. Population balances:theory and applications to particulate systems in engineering. San Diego:Academic Press, 2000 | [2] | Hulburt H M, Katz S. Some problems in particle technology. A statistical mechanical formulation. Chem. Eng. Sci., 1964, 19:555-574 | [3] | Randolph A D. A population balance for countable entities. Canadian J. Chem. Eng., 1964, 42(6):280-281 | [4] | Randolph A D, Larson M A. Theory of particulate processes:analysis and techniques of continuous crystallization, second edition. San Diego:Academic Press, 1988 | [5] | Yeoh G H, Cheung C P, Tu J Y. Multiphase flow analysis using population balance modeling:bubbles, drops and particles. Amsterdam:Elsevier Science, 2014 | [6] | Ramkrishna D, Singh M R. Population balance modeling:current status and future prospects. Annu. Rev. Chem. Biomol. Eng., 2014, 5:123-146 | [7] | Wang K Y, Yu S Y, Peng W. Extended log-normal method of moments for solving the population balance equation for Brownian coagulation. Aerosol Sci. Tech., 2019, 53(3):332-343 | [8] | Wang K Y, Peng W, Yu S Y. A new approximation approach for analytically solving the population balance equation due to thermophoretic coagulation. J. Aerosol Sci., 2019, 128:125-137 | [9] | Cameron I T, Wang F Y, Immanuel C D, Stepanek F. Process systems modelling and applications in granulation:A review. Chem. Eng. Sci., 2005, 60(14):3723-3750 | [10] | Drake R L. A general mathematical survey of the coagulation equation, topics in current aerosol research, part 2. Int. Rev. Aerosol Phys. Chem., 1972, 3:201-376 | [11] | Aldous D J. Deterministic and stochastic models for coalescence (aggregation and coagulation):a review of the mean-field theory for probabilists. Bernoulli, 1999, 5(1):3-48 | [12] | Fournier N, Laurençot P. Well-posedness of smoluchowski's coagulation equation for a class of homogeneous kernels. J. Funct. Anal., 2006, 233(2):351-379 | [13] | Smit D J, Hounslow M J, Paterson W R. Aggregation and gelation-I. Analytical solutions for CST and batch operation. Chem. Eng. Sci., 1994, 49(7):1025-1035 | [14] | Hidy G M, Brock J R. Topics in current aerosol research, part 2, first edition. New York:Pergamon Press, 1972 | [15] | Deryagin B V. Research in surface forces. New York:Springer, 1971 | [16] | Trubnikov B A. Solution of the coagulation equations in the case of a bilinear coefficient of adhesion of particles. Soviet Physics Doklady, 1971, 16:124-125 | [17] | Spouge J L. Solutions and critical times for the monodisperse coagulation equation when a(i,j)=A+B(i+j)+Cij. J. Phys. A Math. Gen., 1983, 16(4):767-773 | [18] | Spouge J L. Solutions and critical times for the polydisperse coagulation equation when a(x,y)=A+B(x+y)+Cxy. J. Phys. A Math. Gen., 1983, 16(13):3127-3132 | [19] | Van Dongen P G J, Ernst M H. Size distribution in the polymerisation model AfRBg. J. Phys. A Math. Gen., 1984, 17(17):2281-2297 | [20] | Kumar S, Ramkrishna D. On the solution of population balance equations by discretization-III. Nucleation, growth and aggregation of particles. Chem. Eng. Sci., 1997, 52(24):4659-4679 | [21] | Müller H. Zur allgemeinen Theorie ser raschen Koagulation. Fortschrittsberichte über Kolloide Und Polymere, 1928, 27(6):223-250(in German) | [22] | Smoluchowski M Z. Versuch einer mathematischen theorie der koagulation rinetisch kolloider lösungen. Zeit. Phys. Chem., 1917, 92:129-168(in German) | [23] | Schumann T E W. Theoretical aspects of the size distribution of fog particles. Quart. J. Roy. Meteorol. Soc., 1940, 66(285):195-208 | [24] | Scott W T. Analytic studies of cloud droplet coalescence I. J. Atmos. Sci., 1968, 25(1):54-65 | [25] | Filbet F, Laurençot P. Numerical simulation of the Smoluchowski coagulation equation. SIAM J. Sci. Comput., 2004, 25(6):2004-2028 | [26] | Ernst M H, Ziff R M, Hendriks E M. Coagulation processes with a phase transition. J. Colloid Interface Sci., 1984, 97(1):266-277 | [27] | 田畴. 李群及其在微分方程中的应用. 北京:科学出版社, 2001(Tian C. Lie group and its applications in differential equations. Beijing:Science Press, 2001) | [28] | Lie S. Theory of transformation groups I, general properties of continuous transformation groups, a contemporary approach and translation, editor and translator:Jool Merker. New York:Springer, 2015 | [29] | Ibragimov N H. CRC handbook of Lie group analysis of differential equations Volume 1, symmetries exact solutions and conservation laws. Boca Raton:CRC Press, 1994 | [30] | Olver P J. Applications of Lie groups to differential equations, 2nd edition. New York:Springer, 1993 | [31] | Bluman G W, Kumei S. Symmetries and differential equations. Berlin:Springer, 1989 | [32] | Ovsiannikov L V. Group analysis of differential equations. Moscow:Nauka, 1978, English translation, Ames, W. F., Ed., New York:Academic Press, 1982. | [33] | Meleshko S V. Methods for constructing exact solutions of partial differential equations:mathematical and analytical techniques with applications to engineering. New York:Springer, 2005 | [34] | Grigoriev Y N, Ibragimov N H, Kovalev V F, Meleshko S V. Symmetries of integro-differential equations:with applications in mechanics and plasma physics. New York:Springer, 2010 | [35] | Suriyawichitseranee A, Grigoriev Y N, Meleshko S V. Group analysis of the Fourier transform of the spatially homogeneous and isotropic Boltzmann equation with a source term. Commun. Nonlinear Sci. Numer. Simulat., 2015, 20(3):719-730 | [36] | Zhou L Q, Meleshko S V. Group analysis of integro-differential equations describing stress relaxation behavior of one-dimensional viscoelastic materials. Int. J. Non-Linear Mech., 2015, 77:223-231 | [37] | Zhou L Q, Meleshko S V. Invariant and partially invariant solutions of integro-differential equations for linear thermoviscoelastic aging materials with memory. Contin. Mech. Thermodyn., 2017, 29(1):207-224 | [38] | Zhou L Q, Meleshko S V. Symmetry groups of integro-differential equations for linear thermoviscoelastic materials with memory. J. Appl. Mech. Tech. Phys., 2017, 58(4):587-609 | [39] | Lin F B, Flood A E, Meleshko S V. Exact solutions of population balance equation. Commun. Nonlinear Sci. Numer. Simulat., 2016, 36:378-390 | [40] | Lin F B, Meleshko S V, Flood A E. Symmetries of population balance equations for aggregation, breakage and growth processes. Appl. Math. Comput., 2017, 307:193-203 | [41] | Lin F B, Meleshko S V, Flood A E. Exact solutions of the population balance equation including particle transport, using group analysis. Commun. Nonlinear Sci. Numer. Simulat., 2018, 59:255-271 | [42] | Long F S, Karnbanjong A, Suriyawichitseranee A, Grigoriev Y N, Meleshko S V. Application of a Lie group admitted by a homogeneous equation for group classification of a corresponding inhomogeneous equation. Commun. Nonlinear Sci. Numer. Simulat., 2017, 48:350-360 | [43] | Ibragimov N H, Meleshko S V, Rudenko O V. Group analysis of evolutionary integro-differential equations describing nonlinear waves:the general model. J. Phys. A Math. Theor., 2011, 44:1-21 | [44] | Grigorev Y N, Meleshko S V, Suriyawichitseranee A. Exact solutions of the Boltzmann equations with a source. J. Appl. Mech. Tech. Phys., 2018, 59(2):189-196 | [45] | Ibragimov N H, Kovalev V F, Pustovalov V V. Symmetries of integro-differential equations:a survey of methods illustrated by the Benny equations. Nonlinear Dynamics, 2002, 28(2):135-153 | [46] | Leyvraz F, Tschudi H R. Singularities in the kinetics of coagulation processes. J. Phys. A, 1981, 14:3389-3405 |
PDF全文下载地址:
http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14822
随机SIRS模型拟最优控制存在的充分条件牟晓洁1,张启敏1,2,王宗11.北方民族大学数学与信息科学学院,银川750021;2.宁夏大学数学统计学院,银川750021SufficientConditionforNear-optimalControlofaStochasticSirsEpidemicM ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27任意初态下非线性不确定系统的迭代学习控制李国军1,2,陈东杰2,韩一士2,许中石21.浙江工业大学信息工程学院,杭州310023;2.浙江警察学院公共基础部,杭州310053IterativeLearningControlwithArbitraryInitialStatesforNonlinearS ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27病例-队列设计下长度偏差数据的比例均值剩余寿命模型的统计推断徐达1,周勇2,31.上海财经大学统计与管理学院,上海200082;2.华东师范大学经管学部交叉科学研究院及统计学院,上海200241;3.中国科学院数学与系统科学研究院,北京100190ProportionalMeanResidualLi ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27具有内部控制和边界观测具有时滞的单管热交换方程的指数稳定性郑福1,聂坤1,郭宝珠21.渤海大学数理学院数学系,锦州121013;2.中国科学院系统科学与数学研究院,北京100190HeatExchangerEquationwithInnerControlfourandBoundaryObservat ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27基于分数阶滑模控制器的不确定分数阶混沌系统同步阎晓妹1,尚婷1,赵小国21.西安理工大学自动化与信息工程学院,西安710048;2.西安建筑科技大学机电工程学院,西安710055SynchronizationofUncertainFractional-orderChaoticSystemsBased ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27随机扰动神经网络的脉冲控制陈远强贵州民族大学理学院,贵阳550025ImpulsiveControlofNeuralNetworkswithRandomDisturbanceCHENYuanqiangCollege,GuizhouMinzuUniversity,Guiyang550025,China ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27树的彩虹控制数的一个多项式时间算法王侃1,2,丁佳2,3,王超2,31.浙江师范大学数理与信息工程学院,金华321004;2.华东师范大学数学系,上海200241;3.华东师范大学上海市核心数学和实践重点实验室,上海200241APolynomial-timeAlgorithmforRainbowD ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27正则多部竞赛图的控制图李瑞娟,刘冬婷山西大学数学科学学院,太原030006TheDominationGraphofaRegularMultipartiteTournamentLIRuijuan,LIUDongtingSchoolofMathematicalSciences,ShanxiUnivers ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27具反馈控制的单方不能独立生存合作系统稳定性研究周晓燕1,普丽琼2,薛亚龙3,谢向东31.福州职业技术学院公共基础部,福州350108;2.福州大学数学与计算机科学学院,福州350108;3.宁德师范学院数学系,宁德352100OntheStabilityPropertyofanObligateLot ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27变分同伦摄动迭代法求解抛物型方程反问题中的控制参数白伟1,郭士民21.宁夏师范学院数学与计算机科学学院,宁夏756000;2.西安交通大学数学与统计学院,西安710049VariationalHomotopyPerturbationIterationMethodforComputingaContro ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|