删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

一类具时间周期和非局部时滞的非拟单调反应扩散方程的整体解

本站小编 Free考研考试/2021-12-27

一类具时间周期和非局部时滞的非拟单调反应扩散方程的整体解 王双明兰州财经大学信息工程学院, 兰州 730020 Reaction-diffusion Equation without Quasi-monotonicity WANG ShuangmingSchool of Information Engineering, Lanzhou University of Finance and Economics, Lanzhou 730020, China
摘要
图/表
参考文献
相关文章(11)
点击分布统计
下载分布统计
-->

全文: PDF(401 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要研究了一类不具有拟单调性的时间周期非局部时滞反应扩散方程的新型整体解.为了克服拟单调性条件缺失带来的困难,借助于两个拟单调辅助方程的周期行波解和相应空间齐次方程的全轨道构造了新型的整体解.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2019-06-28
PACS:O175
基金资助:甘肃省科技计划(18JR3RA217),甘肃省高等学校创新基金项目(2020A-062),兰州财经大学科研项目(Lzufe2019B-006)资助.

引用本文:
王双明. 一类具时间周期和非局部时滞的非拟单调反应扩散方程的整体解[J]. 应用数学学报, 2020, 43(4): 668-683. WANG Shuangming. Reaction-diffusion Equation without Quasi-monotonicity. Acta Mathematicae Applicatae Sinica, 2020, 43(4): 668-683.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2020/V43/I4/668


[1] Jin Y, Zhao X Q. Spatial dynamics of a non-local periodic reaction-diffusion model with stage structure. SIAM J. Math. Anal., 2009, 40(6):2496-2516
[2] Zhang L, Wang Z C, Zhao X Q. Propagation dynamics of a time periodic and delayed reaction-diffusion model without quasi-monotonicity. Trans. Amer. Math. Soc., 2019, 372(3):1751-1782
[3] Li P, Wu S L. Monostable traveling waves for a time-periodic and delayed nonlocal reaction-diffusion equation. Z. Angew. Math. Phys., 2018, 69(2)39:1-16, http://doi.org/10.1007/s00033-018-0936-7
[4] Hamel F, Nadirashvili N. Entire solutions of the KPP equation. Commun. Pure Appl. Math., 1999, 52(10):1255-1276
[5] Hamel F, Nadirashvili N. Travelling fronts and entire solutions of the Fisher-KPP equation in RN. Arch. Ration. Mech. Analysis, 2001, 157(2):91-163
[6] Chen X F, Guo J S. Existence and uniqueness of entire solutions for a reaction-diffusion equation. J. Differential Equations., 2005, 212(1):62-84
[7] Chen X F, Guo J S, Ninomiya H. Entire solutions of reaction-diffusion equations with balanced bistable nonlinearities. Proc. Roy. Soc. Edinburgh Sect. A, 2006, 136(06):1207-1237
[8] Morita Y, Ninomiya H. Entire solutions with merging fronts to reaction-diffusion equations. J. Dynam. Diff. Eqns., 2006, 18(4):841-861
[9] Chen Y Y, Guo J S, Ninomiya H, Yao C H. Entire solutions originating from monotone fronts to the Allen-Cahn equation. Phys. D, 2018, 378/379:1-19
[10] Wang Z C, Li W T, Wu J H. Entire solutions in delayed lattice differential equations with monostable nonlinearity. SIAM J. Math. Anal., 2009, 40(6):2392-2420
[11] Fukao Y, Morita Y, Ninomiya H. Some entire solutions of the Allen-Cahn equation. Taiwan. J. Math. 2004, 8(1):15-32
[12] Guo J S, Morita Y. Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations. Discrete Contin. Dynam. Syst., 2005, 12(2):193-212
[13] Yagisita H. Backward global solutions characterizing annihilation dynamics of traveling fronts. Publ. Res. Inst. Math. Sci., 2003, 39(1):117-164
[14] Li W T, Liu N W, Wang Z C. Entire solutions in reaction-advection-diffusion equations in cylinders. J. Math. Pures Appl., 2008, 90(5):492-504
[15] Li W T, Wang Z C, Wu J H. Entire solutions of monostable reaction-diffusion equations with delayed nonlinearity. J. Differential Equations, 2008, 245(1):102-129
[16] Wang Z C, Li W T. Dynamics of a non-local delayed reaction-diffusion equation without quasi-monotonicity. Proc. Roy. Soc. Edinburgh Sect. A, 2010, 140(05):1081-1109
[17] Wang Z C, Li W T, Ruan S G. Entire solutions in bistable reaction-diffusion equations with nonlocal delayed nonlinearity. Trans. Amer. Math. Soc., 2008, 361(4):2047-2084
[18] Wu S L, Hsu C H. Entire solutions of nonlinear cellular neural networks with distributed time delays. Nonlinearity, 2012, 25(9):2785-2801
[19] Wu S L, Hsu C H. Entire solutions of non-quasi-monotone delayed reaction-diffusion equations with applications. Proc. Roy. Soc. Edinburgh Sect. A, 2014, 144(5):1085-1112
[20] Wu S L, Ruan S G. Entire solutions for nonlocal dispersal equations with spatio-temporal delay:monostable case. J. Differential Equations, 2015, 258(7):2435-2470
[21] Ma S W. Traveling waves for non-local delayed diffusion equations via auxiliary equation. J. Differential Equations, 2007, 237(2):259-277
[22] Sheng W J, Cao M L. Entire solutions of the Fisher-KPP equation in time periodic media. Dyn. Partial Differ. Equ., 2012, 9(2):133-145
[23] Sheng W J, Wang J B. Entire solutions of time periodic bistable reaction-advection-diffusion equations in infinite cylinders. J. Math. Phy., 2015, 56(8):2777-2805
[24] Wang Z C, Zhang L, Zhao X Q. Time periodic traveling waves for a periodic and diffusive SIR epidemic model. J. Dynam. Differential Equations, 2018, 30(1):379-403
[25] Daners D, Koch-Medina P. Abstract Evolution Equations, Periodic Problems and Applications, Pitman Research Notes in Mathematics Series, 279. Longman:Harlow, UK, 1992
[26] Smith H L. Monotonic Dynamical Systems:An Introduction to the Theory of Competitive and Cooperative systems. Mathematical Surveys and Monographs, American Mathematical Society:Providence, 41, 1995
[27] Xu D S, Zhao X Q. Dynamics in a periodic competitive model with stage structure. J. Math. Anal. Appl., 2005, 311(2):417-438
[28] Zhao X Q. Dynamical Systems in Population Biology. New York:Springer-Verlag, 2017

[1]王琳. 具有多项式增长系数的随机延迟微分方程的整体解与矩估计[J]. 应用数学学报, 2016, 39(5): 765-785.
[2]王宗毅. 一类周期型反应扩散种群系统的空间动力学[J]. 应用数学学报(英文版), 2014, 37(2): 343-355.
[3]张杰, 伏升茂, 崔尚斌. 一个肿瘤侵入模型的定性分析[J]. 应用数学学报(英文版), 2011, 34(5): 786-800.
[4]张丽娜, 伏升茂. 捕食者-食饵-互惠交错扩散模型解的整体存在性[J]. 应用数学学报(英文版), 2011, 34(1): 131-138.
[5]甘在会, 张健. Klein-Gordon-Zakharov系统中的交叉强制变分方法[J]. 应用数学学报(英文版), 2008, 31(1): 180-189.
[6]甘在会, 张健. 带双势的非线性Klein-Gordon方程的整体解[J]. 应用数学学报(英文版), 2005, 28(3): 490-496.
[7]刘亚成, 刘萍. 关于位势井及其对强阻尼非线性波动方程的应用[J]. 应用数学学报(英文版), 2004, 27(4): 710-722.
[8]丁丹平, 田立新. 耗散Camassa-Holm方程的吸引子[J]. 应用数学学报(英文版), 2004, 27(3): 536-545.
[9]吴书印, 赵怡. 高维弱阻尼Schrdinger方程的渐近行为[J]. 应用数学学报(英文版), 2001, 24(2): 262-270.
[10]李德生. 一类非经典扩散方程整体解的存在唯一性及长时间行为[J]. 应用数学学报(英文版), 1998, 21(2): 0-0.
[11]杨志坚. 关于一类非线性发展方程整体解的存在性问题[J]. 应用数学学报(英文版), 1997, 20(3): 0-0.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14795
相关话题/应用数学 兰州财经大学 统计 空间 系统