删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

交叉数为2且因子图为路的笛卡尔积图

本站小编 Free考研考试/2021-12-27

交叉数为2且因子图为路的笛卡尔积图 王晶1, 欧阳章东2, 黄元秋31. 长沙学院计算机工程与应用数学学院, 长沙 410003;
2. 湖南第一师范学院数学系, 长沙 410205;
3. 湖南师范大学数学与统计学院, 长沙 410081 The Cartesian Product Graphs with Crossing Number Two When a Factor is a Path WANG Jing1, OUYANG Zhangdong2, HUANG Yuanqiu31. Department of Mathematics and Computer Science, Changsha University, Changsha 410003;
2. Department of Mathematics, Hunan First Normal University, Changsha 410205;
3. College of Mathematics and Statistics, Hunan Normal University, Changsha 410081
摘要
图/表
参考文献
相关文章(5)
点击分布统计
下载分布统计
-->

全文: PDF(348 KB) HTML (1 KB)
输出: BibTeX | EndNote (RIS)
摘要M.Klešč和J.Petrillová刻画了当G1为圈且cr(G1G2)=2时,因子图G1G2所满足的充要条件.在此基础上,该文进一步刻画了在cr (G1G2)=2的前提下,当G1=P4,或者G1=P3且Δ(G2)=4时,因子图△G2应满足的充要条件.
服务
加入引用管理器
E-mail Alert
RSS
收稿日期: 2018-10-16
PACS:O157.5
基金资助:湖南省自然科学基金(No.2018JJ2454),湖南省教育厅重点项目(No.18A382)资助项目.

引用本文:
王晶, 欧阳章东, 黄元秋. 交叉数为2且因子图为路的笛卡尔积图[J]. 应用数学学报, 2020, 43(1): 119-128. WANG Jing, OUYANG Zhangdong, HUANG Yuanqiu. The Cartesian Product Graphs with Crossing Number Two When a Factor is a Path. Acta Mathematicae Applicatae Sinica, 2020, 43(1): 119-128.
链接本文:
http://123.57.41.99/jweb_yysxxb/CN/ http://123.57.41.99/jweb_yysxxb/CN/Y2020/V43/I1/119


[1] Gross J L, Tucker T W. Topological graph theory. New York:Wiley, 1987
[2] Bondy J A, Murty U S R. Graph theory. New York:Springer, 2008
[3] Alfaro C A, A Arroyo, Derňár M, Mohar B. The crossing number of the cone of a graph. SIAM J. Discrete Math., 2018, 32:2080-2093
[4] Dvorák Z, Mohar B. Crossing numbers of Periodic graphs. J. Graph Theory, 2016, 83:34-43
[5] Bokal D, Oporowski B, Richter R B, Salazar G. Characterizing 2-crossing-critical graphs. Adv. Appl. Math., 2016, 74:23-208
[6] Garey M R, Johnson D S. Crossing number is NP-complete. SIAM J. Algebraic Discrete Methods, 1983, 4:312-316
[7] Kleitman D J. The crossing number of K5,n. J. Combin. Theory, 1970, 9:315-323
[8] Richter R B, Širáň J. The crossing number of K3,n in a surface. J. Graph Theory, 1996, 21:51-54
[9] Yang Y S, Lin X H, Lu J, Hao X. The crossing number of C(n;1,3). Discrete Math., 2004, 289:107-118
[10] Ma D J, Ren H, Lu J J. The crossing number of the circular graph C(2m+2,m). Discrete Math., 2005, 304:88-93
[11] 卢俊杰, 任韩, 马登举. C(m,3)的交叉数. 系统科学与数学, 2004, 24:504-512(Lu J J, Ren H, Ma D J. The crossing number of C(m,3). Journal of Systems Science and Mathematical Sciences, 2004, 24:504-512)
[12] 吕胜祥, 黄元秋. K2,4□Sn 的交叉数. 系统科学与数学, 2010, 30(7):929-935(Lv S X, Huang Y Q. On the crossing number of K2,4□Sn. Journal of Systems Science and Mathematical Sciences, 2010, 30(7):929-935)
[13] 马祖强, 蔡俊亮. W5□Sn 的交叉数. 应用数学学报, 2008, 31:615-623(Ma Z Q, Cai J L. The crossing number of W5□Sn. Acta Mathematicae Applicatae Sinica, Chinese Series, 2008, 31:615-623)
[14] 欧阳章东, 黄元秋. Km-□Pn 的交叉数. 数学学报, 2016, 59(3):405-410(Ouyang Z D, Huang Y Q. The crossing number of Km-□Pn. Acta Mathematica Sinica, Chinese Series, 2016, 59(3):405-410)
[15] Klešč M. The crossing numbers of Cartesian products of paths with 5-vertex graphs. Discrete Math., 2001, 233:353-359
[16] Bokal D. On the crossing numbers of Cartesian products with paths. J. Combin. Theory Ser. B, 2007, 97:381-384
[17] Klešč M, Petrillová J. On Cartesian products with small crossing numbers. Carpathian J. Math., 2012, 28:67-75
[18] Bokal D. On the crossing numbers of Cartesian products with trees. J. Graph Theory, 2007, 56:287-300
[19] Asano K. The crossing number of K1,3,n and K2,3,n. J. Graph Theory, 1980, 10:1-8
[20] Huang Y Q, Zhao T L. The crossing number of K1,4,n. Discrete Math., 2008, 308:1634-1638
[21] Klešč M. The crossing numbers of products of paths and stars with 4-vertex graphs. J. Graph Theory, 1994, 18:605-614
[22] Klešč M. The crossing numbers of K2,3□Pn and K2,3□Sn. Tatra Mt. Math. Publ., 1996, 9:51-56

[1]王晶, 欧阳章东, 黄元秋. 关于交叉数为1的联图[J]. 应用数学学报, 2017, 40(5): 727-733.
[2]苏振华. 联图K1,1,1,2+Pn的交叉数[J]. 应用数学学报, 2017, 40(3): 345-354.
[3]李阳, 黄元秋. 联图S5Cn的交叉数[J]. 应用数学学报, 2016, 39(2): 173-183.
[4]欧阳章东, 黄元秋. 关于K2,2,2Sn的交叉数[J]. 应用数学学报, 2015, 38(6): 968-975.
[5]袁梓瀚, 黄元秋, 刘金旺. 循环图C(9,2)与路Pn的笛卡尔积的交叉数[J]. 应用数学学报(英文版), 2013, 36(2): 350-362.



PDF全文下载地址:

http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14716
相关话题/应用数学 数学 科学 系统 统计