摘要混合水平覆盖阵,简称混合覆盖阵,是广泛应用于软件、硬件和网络测试的覆盖阵一种推广形式.设N,t,k,vi(i=1,2,…,k)均为正整数,其中2 ≤ t ≤ k.混合覆盖阵MCA(N;t,k,(v1,v2,…,vk))是一个N×k阵列,其第i列上元素取自大小为vi的符号集Vi,且满足任意N×t子阵列包含其符号集上所有t-元组至少一次.本文给出了强度≥ 3混合覆盖阵的若干构造方法,运用这些构造和相关已知结果,得到了若干最优强度≥ 3混合覆盖阵. |
[1] | Hedayat A S, Slone N J A, Stufken J. Orthogonal Arrays. New York:Springer, 1999 | [2] | Seroussi G, Bshouty N H. Vector sets for exhaustive testing of logic circuits. IEEE Trans. Inform. Theory, 1988, 34:513-522 | [3] | Körner J, Lucertini M. Compressing inconsistent data. IEEE Trans. Inform. Theory, 1994, 40:706-715 | [4] | Rao C R. Factorial experiments derivable from combinatorial arrangements of arrays. Suppl. J. Roy. Statist. Soci., 1947, 9:128-139 | [5] | Chateauneuf M, Kreher D L. On the state of strength three covering arrays. J. Combin. Des., 2002, 10:217-238 | [6] | Colbourn C J. Combinatorial aspects of covering arrays. Matematiche (Catania), 2004, 58:121-167 | [7] | Hartman A. Software and hardware testing using combinatorial covering suites. In:Graph theory, combinatorics and algorithms:interdisciplinary applications, Golunbic M C and Hartman A (eds.) Boston:Springer-Verlag, 2005, 237-266 | [8] | 严俊, 张健. 组合测试:原理与方法. 软件学报, 2009, 20(6):1393-1405(Yan J, Zhang J. Combinatorial Testing:Principles and Methods. Journal of Software, 2009, 20(6):1393-1405) | [9] | 王子元, 徐宝文, 聂长海. 组合测试用例生成技术. 计算机科学与探索, 2008, 2(6):571-588(Wang Z Y, Xu B W, Nie C H. Survey of combinatorial test generation. Journal of Frontiers Computer Science and Technology, 2008, 2(6):571-588) | [10] | Ji L J, Li Y, Yin J X. Constructions of covering arrays of strength five. Des. Codes Cryptogr., 2012, 62:199-208 | [11] | Ji L J, Yin J X. Constructions of new orthogonal arrays and covering arrays of strength Three. J. Combin. Theory Ser. A, 2010, 117:236-247 | [12] | Li Y, Ji L J, Yin J X. Covering arrays of strength 3 and 4 from holey difference matrices. Des. Codes Cryptogr., 2009, 50:339-350 | [13] | Colbourn C J, Martirosyan S S, Mullen G L, Shasha D E, Sherwood G B, Yucas J L. Products of mixed covering arrays of strength two. J. Combin. Des., 2006, 14:124-138 | [14] | Colbourn C J. Strength two covering arrays:Existence tables and projection, Discrete Math., 2008, 308:772-786 | [15] | Meagher K, Moura L, Zekaoui L. Mixed covering arrays on graphs. J. Combin. Des., 2007, 15:393-404 | [16] | Moura L, Stardom J, Stevens B, Williams A. Covering arrays with mixed alphabet sizes. J. Combin. Des., 2003, 11:413-432 | [17] | Sherwood G B. Optimal and near-optimal mixed covering arrays by column expansion. Discrete Math., 2008, 308:6022-6035 | [18] | Colbourn C J, Shi C, Wang C M, Yan J, Mixed covering arrays of strength three with few factors. J. Statist. Plann. Inference, 2011, 141:3640-3647 | [19] | Shi C, Tang Y, Yin J X. Optimum mixed level detecting arrays. Annals of Statistics, 2014, 42(4):1546-1563 | [20] | Rao C R. Some combinatorial problems of arrays and applications to design of experiments. In A Survey of Combinatorial Theory (Edited by J. N. Srivastava), Amsterdam:North-Holland, 1973, 349-359 | [21] | Colbourn C J, Dinitz J H. The CRC Handbook of Combinatorial Designs (2nd Edition). CRC Press, Boca Raton, FL, 2007 | [22] | Schoen E D, Eendebak P T, Nguyen M V M. Complete enumeration of pure-level and mixed-level orthogonal arrays. J. Combin. Des., 2010, 18:123-140(Correction:J. Combin. Des., 2010, 18:488) | [23] | Bush K A. Orthogonal arrays of index unity. Ann. Math. Stat., 1952, 23:426-434 | [24] | Bush K A. A generalization of the theorem due to MacNeish. Ann. Math. Stat., 1952, 23:293-295 | [25] | Johnson K A, Entringer R. Largest induced subgraphs of the n-cube that contain no 4-cycles. J. Combin. Theory B, 1989, 46:346-355 | [26] | Jiang L, Yin J X. An approach of constructing mixed-level orthogonal arrays of strength ≥ 3. Science China Mathematics, 2013, 56(5):1109-1115 | [27] | Cohen M B, Gibbons P B, Mugridge W B, et al. Variable strength interaction testing of components, In:Proceedings of the 27th Annual International Computer Software and Applications Conference. Dallas, TX:IEEE Computer Society Washington, 2003, 413-418 | [28] | Suen C Y. Construction of mixed orthogonal arrays by juxtaposition. Statistics & Probability Letters, 2003, 65:161-163 |
[1] | 常莉红, 时朋朋, 崔江彦. 一维六方准晶材料中双周期裂纹反平面问题[J]. 应用数学学报, 2017, 40(4): 489-496. | [2] | 史册, 闻斌, 林静. 循环连续正交表[J]. 应用数学学报, 2016, 39(5): 786-800. | [3] | 任庆娟, 许保光, 高敏刚. 一类特殊覆盖问题的解构造方法研究[J]. 应用数学学报, 2014, 37(6): 1056-1067. | [4] | 施志昱, 刘官厅. 点群6一维六方准晶狭长体中有限长Griffith裂纹的反平面问题[J]. 应用数学学报(英文版), 2013, 36(3): 532-540. | [5] | 贾红刚, 聂玉峰. 各向异性板半无限裂纹平面问题的保角变换解法[J]. 应用数学学报(英文版), 2013, 36(2): 243-248. | [6] | 杨联华, 双鹂, 汪小明, 吴红星. 仅有y-分量耦合的非恒同Lorenz系统的渐近同步[J]. 应用数学学报(英文版), 2013, (1): 52-61. | [7] | 莫晓云, 杨向群. Markov 调制风险模型的轨道刻划和概率构造 [J]. 应用数学学报(英文版), 2012, (3): 385-395. | [8] | 杜蛟, 王守印, 温巧燕, 庞善起. 强度m的对称正交表的递归构造[J]. 应用数学学报(英文版), 2012, (2): 232-244. | [9] | 杨联华, 双 鹂, 汪小明. 仅有x-分量耦合的非恒同Lorenz系统的渐近同步[J]. 应用数学学报(英文版), 2009, 32(1): 121-131. | [10] | 曹礼群, 崔俊芝. 整周期复合材料弹性结构的双尺度渐近分析[J]. 应用数学学报(英文版), 1999, 22(1): 38-047. | [11] | 庞之垣. 两种介质各阶应力强度因子的直接积分表达(Ⅱ):一般情况[J]. 应用数学学报(英文版), 1996, 19(2): 263-270. |
|
PDF全文下载地址:
http://123.57.41.99/jweb_yysxxb/CN/article/downloadArticleFile.do?attachType=PDF&id=14549
基于分数阶滑模控制器的不确定分数阶混沌系统同步阎晓妹1,尚婷1,赵小国21.西安理工大学自动化与信息工程学院,西安710048;2.西安建筑科技大学机电工程学院,西安710055SynchronizationofUncertainFractional-orderChaoticSystemsBased ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27H增生映射和含有广义(p,q)-Laplacian算子的非线性椭圆系统魏利1,张瑞兰1,RaviP.Agarwal2,31.河北经贸大学数学与统计学学院,石家庄050061;2.DepartmentofMathematics,TexasA&MUniversity-Kingsville,Kingsvi ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27时间模上一类二阶非线性延迟动力系统的振动性分析杨甲山梧州学院信息与电子工程学院,梧州543002OscillationAnalysisofSecond-orderNonlinearDelayDynamicEquationsonTimeScalesYANGJiashanSchoolofInformat ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27带有初态误差的高阶多智能体系统一致性跟踪李国军1,2,陈东杰2,韩一士21.浙江工业大学信息工程学院,杭州310023;2.浙江警察学院公共基础部,杭州310053ConsensusTrackingofHigh-orderMulti-agentSystemswithInitialStateError ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27具有阶段结构的时滞分数阶捕食者-食饵系统的稳定性分析王虎1,田晶磊2,孙玉琴3,于永光11.中央财经大学统计与数学学院,北京100081;2.北京交通大学理学院,北京100044;3.内蒙古大学鄂尔多斯应用技术学院,内蒙古017000StabilityAnalysisofFractionalStag ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27温储备失效和单重休假Min(N,V)-策略的M/G/1可修排队系统蔡晓丽1,唐应辉1,21.四川师范大学数学与软件科学学院,成都610068;2.四川师范大学数学与软件科学学院,成都610068M/G/1RepairableQueueingSystemwithWarmStandbyFailurean ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27Keller-Segel抛物系统解的爆破现象李远飞广东财经大学华商学院,广州511300Blow-upPhenomenafortheSolutionstoaFullyParabolicKeller-SegelSystemLIYuanfeiSchoolofMathematic,SouthChinaof ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27非线性扰动广义NNV微分系统的孤子研究欧阳成1,陈贤峰2,莫嘉琪31.湖州师范学院理学院,湖州313000;2.上海交通大学数学系,上海200240;3.安徽师范大学数学系,芜湖241003StudyfortheSolitonofNonlinearDisturbedGeneralizedNNVDif ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27捕食者带有疾病的入侵反应扩散捕食系统的空间斑图李成林云南省红河州蒙自市红河学院数学学院,蒙自661199SpatiotemporalPatternFormationofanInvasion-diffusionPredator-preySystemwithDiseaseinthePredatorLIC ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27一类带收获项的离散Lotka-Volterra合作系统的四个正周期解廖华英1,周正21.南昌师范学院数学与计算机科学系,南昌330032;2.厦门理工学院应用数学学院,厦门361024FourPositivePeriodicSolutionsforaDiscreteLotka-VolterraCoo ... 中科院数学与系统科学研究院 本站小编 Free考研考试 2021-12-27
|