删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

不同因素对六盘山地区甘肃鼢鼠肠道细菌多样性的影响

本站小编 Free考研考试/2021-12-26

不同因素对六盘山地区甘肃鼢鼠肠道细菌多样性的影响
杨静1, 南小宁1, 邹垚1, 张斐然1, 石建宁2, 韩崇选1
1.西北农林科技大学林学院, 陕西 杨陵 712100;
2.宁夏森林病虫害防治检疫总站, 宁夏 银川 750001

收稿日期:2017-08-14;修回日期:2018-01-26;网络出版日期:2018-03-29
基金项目:林木重大生物灾害扩散流行的生态适应与分子基础(2017YFD0600100)
*通信作者:南小宁, E-mail:nxn@nwsuaf.edu.cn
韩崇选, E-mail:sendakingcat@nwsuaf.edu.cn


摘要[目的]研究甘肃鼢鼠肠道细菌的群落结构和多样性,探讨不同环境因素对六盘山地区甘肃鼢鼠肠道细菌多样性的影响。[方法]通过Illumina高通量测序技术,对甘肃鼢鼠的36个盲肠样品进行16S rRNA V3-V4区的高通量测序,分析了肠道细菌多样性、丰度和群落结构,探讨地域、性别和季节等因素对甘肃鼢鼠肠道细菌多样性的影响。[结果]甘肃鼢鼠肠道细菌群落主要包括3个门,其中Firmicutes门占主导地位,其次是Bacteroidetes和Proteobacteri。在属水平,优势菌属分别为OscillospiraRuminococcusCoprococcusDesulfovibrio等。不同县(区)样品中,彭阳县、隆德县和泾源县三个县的甘肃鼢鼠肠道细菌菌群结构相似度较高,海原县甘肃鼢鼠肠道细菌群落结构在组内相似度高,与其他县(区)相似度低;雌性甘肃鼢鼠肠道细菌群落结构相似性高,而雄性细菌群落结构在样品间差异较大;甘肃鼢鼠肠道细菌菌群多样性秋季显著高于春季,细菌群落结构相似度秋季高于春季。[结论]不同地域、性别和季节因素对甘肃鼢鼠肠道细菌群落结构产生显著的影响,甘肃鼢鼠肠道细菌群落结构和多样性的变化对基于食源的季节性变化具有积极的响应。
关键词: 甘肃鼢鼠 肠道菌群 高通量测序 盲肠
Effects of the three factors on intestinal bacterial diversity of Eospalax cansus in the region of Liupan Mountains
Jing Yang1, Xiaoning Nan1, Yao Zou1, Feiran Zhang1, Jianning Shi2, Chongxuan Han1
1.College of Forestry, Northwest A & F University, Yangling 712100, Shaanxi Province, China;
2.Ningxia Hui Autonomous Region Forest Disease and Pest Control Quarantine Station, Yinchuan 750001, Ningxia Hui Autonomous Region, China

Received 14 August 2017; Revised 26 January 2018; Published online 29 March 2018
*Corresponding author: Xiaoning Nan, E-mail: nxn@nwsuaf.edu.cn
Chongxuan Han, E-mail: sendakingcat@nwsuaf.edu.cn
Supported by the Ecological Adaptation and Molecular Basis of the Spread of Major Biological Disasters in Forest Trees (2017YFD0600100)

Abstract: [Objective]We studied the influence of three factors (region, gender and season) on intestinal bacterial community structure and diversity of Gansu zokor distributed in Liupan Mountains.[Methods]The V3-V4 regions of 16S rRNA genes from 36 Gansu zokors' cecum were sequenced using Illumina high-throughput sequencing technology. The sequences were used for analysis of species diversity, abundance and community structure of the intestinal bacteria.[Results]The intestinal bacteria of Gansu zokor mainly consisted of three phyla, among which Firmicutes was the most predominant phylum, and the others of Bacteroidetes and Proteobacteria. At the genus level, the predominant genera were Oscillospira, Ruminococcus, Coprococcus and Desulfovibrio. By comparing samples obtained from different regions, we found intestinal bacterial community structure presented a high similarity among the three counties (Pengyang county, Longde county, and Jingyuan county), whereas it showed a low similarity between Haiyuan county with other counties. Meanwhile, we concluded different sexes had different impacts on intestinal bacterial community structure of Gansu zokor, whereas female zokors are highly variable on the community structure of gut bacteria than male zokors. In addition, season might be an important modulator of the intestinal bacteria. The results showed that intestinal bacterial diversity of Gansu zokor was significantly higher in autumn than in spring, the similarity of bacterial community structure in autumn was also higher than in spring.[Conclusion]Region and gender merely had significant effects on intestinal bacterial community structure of Gansu zokor, whereas seasons might have significant impacts on both community structure and diversity of cecal bacteria significantly.
Key words: Eospalax cansus intestinal bacterial flora high-throughput sequencing cecum
肠道菌群与宿主的生命活动息息相关,它们随着宿主的进化而协同进化[1-2]。肠道细菌群落结构和多样性主要取决于个体的基因型[3-5]和环境[6-10],其中地理条件、性别、季节等各因素在不同程度上都会影响肠道菌群的变化。例如,Lankau等发现地理隔离对鬣蜥、蝙蝠和欧洲萤火虫的肠道菌群有很大的影响,同一物种在不同的地理条件下,肠道菌群结构差异显著[11-13];Sun等在短尾猴肠道微生物研究中发现短尾猴肠道微生物的组成和结构对食物资源的季节波动具有明显的响应[14];性别亦可以通过宿主的遗传来影响肠道微生物的群落[4, 15-16],如小鼠肠道菌群的研究中发现肠道微生物群落组成取决于宿主饮食与性别之间的相互作用[9]。因此,明确环境因素对肠道菌群的影响及肠道菌群对环境因子影响的响应,二者是否存在必然联系,有助于我们进一步理解宿主对环境适应性进化的原因。
六盘山作为东亚季风的西北边缘,受东南季风的影响由东南向西北逐渐减弱,气候由温带半湿润区过渡到温带半干旱区[23]。以400 mm降水线为分界线,海原县、西吉县及原州区北部为温带半干旱区,而泾源县、隆德县和彭阳县为温带半湿润区[24]。六盘山地区退耕还林工程建设,主要采取六盘山土石质山区(包括泾源县、隆德县)黄土丘陵沟壑区(包括原州区、彭阳县和西吉县)两种退耕模式[25]。两种退耕林地中以油松、樟子松、云杉、榆树、刺槐、山杏、沙棘、柠条等为主要造林树种,灌木丛植被主要有扁桃木、杠柳、狼牙刺、丁香、栒子、沙棘、胡枝子等;草本植物有苦荬菜、刺儿菜、大蓟、蒲公英、萎陵菜、本氏针茅、赖草、绣线菊、长芒草、白羊草、苜蓿和沙打旺。两种林地植被除造林树种有部分差异外,其他如灌木和草本没有太大差异。甘肃鼢鼠主要以植被的地下根茎为食,退耕地被害树种由重到轻依次为油松、落叶松、沙棘、山桃、云杉、山杏、柳树、杨树、刺槐、柠条,且幼树受害最重[39]。甘肃鼢鼠喜食的植物依次为菊科、禾本科、杂类草。在本地区最喜食苦荬菜、刺儿菜、大蓟、蒲公英、本氏针茅、赖草等[31]
甘肃鼢鼠(Eospalax cansus)属啮齿目仓鼠科鼢鼠亚科鼢鼠属,食性杂,其食物资源主要以富含纤维素和半纤维素等难消化的根系为主[17]。啮齿动物的盲肠菌群的密度最高,并且复杂多样,是肠道菌群定植的主要部位,如在十三指地松鼠盲肠菌群的研究中指出啮齿动物主要通过盲肠细菌产生的厌氧发酵来降解食物中难消化的淀粉、蛋白质、纤维素和半纤维素等物质,以提供能量支持宿主的生理活动[18]。依据食物资源的差异进行不同季节和地域对宿主消化道适应性的研究尤为重要。目前对于甘肃鼢鼠消化道适应性的研究仅限于形态生理学[19-22],如杨佐娟等在甘肃鼢鼠胃肠道适应性变化的研究中发现环境的变化对甘肃鼢鼠消化道形态、结构和生理功能有显著的影响[22]。但前者在甘肃鼢鼠环境适应性的研究中忽略了肠道菌群对其宿主生命活动的重要作用。
本研究按照六盘山地区半湿润区和半干旱区不同地域以及甘肃鼢鼠活动频繁的春、秋两季采集样品,采用Illumina高通量测序技术,通过六盘山地区不同地域、季节等环境因素下甘肃鼢鼠对该地区植被取食的变化,分析甘肃鼢鼠肠道细菌多样性变化规律,探究甘肃鼢鼠肠道细菌对其食物资源的响应机制。同时,为甘肃鼢鼠环境适应性进化研究提供一定的理论基础。
1 材料和方法 1.1 样品的采集与保存 利用接地式活体捕鼠器从宁夏六盘山地区6个区县采集甘肃鼢鼠活体,共计36个样。采集样本均为成年甘肃鼢鼠,体重介于200–300 g。其中,2016年4月在海原县月亮山林场(36.2010°N,105.6203°E)采集3只(♀)、西吉县张家洼林场(36.1094°N, 105.5655°E) 2只(♀),泾源县黄花乡双龙岭(35.5142°N, 106.3510°E) 3只(♀),隆德县东山生态园(35.7322°N, 106.1710°E) 3只(♀),彭阳县阳洼(35.7502°N, 106.5407°E) 3只(♀),原州区红庄林场(35.8121°N, 106.1143°E) 3只(♀)。2016年9月在相同的地点采集样本,其中,西吉县6只(3♀3),隆德县6只(3♀3),泾源县6只(3♀3)。采集的甘肃鼢鼠活体通过乙酸乙酯麻醉后在无菌的条件下解剖,收集盲肠末端肠道内容物装于5 mL灭菌冻存管投置于液氮中带回实验室,冻存于–80 ℃冰箱备用。
1.2 肠道微生物DNA的提取 提取甘肃鼢鼠36个盲肠内容物样品的总DNA,每个盲肠内容物取180–220 mg加液氮研磨,采用德国QIAGEN的粪便基因组DNA提取试剂盒提取盲肠内容物总DNA,其中包括细菌基因组DNA[26]。提取后的DNA经Nano drop检测其纯度和浓度,并用1%琼脂糖凝胶电泳检测其完整性,选取条带清晰、DNA浓度和纯度检测合格的样品送上海派森诺公司测序。
1.3 测序 PCR所用的引物为515 F-533 R (对应细菌V3–V4区) (515 F:5′-GTGCCAGCMGCCGCGG-3′,533 R:5′-CCGTCAATTCMTTTRAGTTT-3′)。50 μL反应体系:Q5 high-fidelity DNA polymerase 0.25 μL,5×Reaction Buffer 5 μL,5×High GC Buffer 5 μL,dNTP (10 mmol/L) 0.5 μL,模板DNA 1 μL,正向引物(10 μmol/L) 1 μL,反向引物(10 μmol/L) 1 μL,三蒸水11.25 μL。PCR扩增:98 ℃ 30 s;98 ℃ 15 s,50 ℃ 30 s,25–27个循环;72 ℃ 30 s,72 ℃ 5 min,4 ℃保存。PCR结束后,对PCR产物进行1%琼脂糖电泳,采用Axygen凝胶回收试剂盒切胶回收目的片段。回收产物采用Quant-iT PicoGreen dsDNA Assay Kit定量,采用MiSeq Reagent Kit V3 (600 cycles)进行2×300 bp的双端测序法测序(上海派森诺公司测序)。
1.4 生物信息分析 高质量的有效序列使用QIIME (quantitative insights into microbial ecology)[27]进行分析。以97%的序列相似度为阈值进行OTUs (operational taxonomic units)的聚类,对得到的序列进行不同分类水平上的鉴定,并利用Cytoscape构建net-work对甘肃鼢鼠肠道细菌之间的相互关系进行探究。除此之外,进行肠道细菌群落Alpha和Beta多样性的分析,并利用抽取不同序列数目下观察到的OTUs数目等绘制稀释性曲线等以实现对测序深度的评估。
1.5 统计分析 采用SPSS 20.0软件和Excel 2003进行数据统计分析,差异显著性采用单因素方差分析法及多重比较分析法,数据结果以平均值±标准偏差(x±SD)表示。使用R软件对Weighted的UniFrac距离矩阵分别进行NMDS分析,通过低维空间中的排序反应样本之间的距离的远近关系,NMDS分析中两点之间的距离越近,两个样本之间的细菌群落结构相似度越高,差异越小。
2 结果和分析 2.1 测序结果 测序共获得929837条16S rRNA基因序列。根据序列相似性97%水平划分得到各样品间可操作分类单元(operational taxonomic units, OTUs)为392–2642。香农指数在将近2000左右出现拐点,之后曲线趋于平缓,覆盖了所有OTU的94.91%,表明测序条数已经涵盖了绝大多数的细菌,也充分展现了其多样性,保证了后续分析的可靠性。
2.2 不同地域甘肃鼢鼠肠道细菌群落的多样性分析
2.2.1 Alpha多样性指数及样品的OTU丰度的差异分析: 为保持采集样品背景因素的均一性,统一采用春季采集的雌性甘肃鼢鼠进行不同县(区)甘肃鼢鼠肠道细菌群落组成的分析。西吉县样品OTUs和Alpha多样性指数显著低于其他5个地区,其原因可能是在样品准备或提取等人为操作过程中丢失的。西吉县测序数据不具有代表性,不能用于不同地域间细菌群落分析,故在分析时剔除该组数据。
对不同县(区)样品Alpha多样性指数(表 1)进行单因素方差分析和LSD分析(表 2),结果显示:Chao1指数和Ace指数在原州区与泾源县、彭阳县2个组分别存在显著性差异(表 2),说明泾源县、彭阳县两县的细菌群落多样性显著高于原州区;Simpson指数在海原县与隆德县、泾源县、彭阳县及原州区4个组的样品存在显著差异(表 2),表明海原县甘肃鼢鼠肠道样品中细菌的优势种集中度与其他四县(区)样品的细菌优势种集中度存在显著性差异;Shannon指数在5个县样品中无显著性差异,表明甘肃鼢鼠肠道细菌菌群均匀度在这5个县(区)无显著性差异。
表 1. 不同县(区)甘肃鼢鼠肠道样品OTUs和Alpha多样性指数表 Table 1. OTUs and Alpha diversity indices obtained from pyrosequencing analysis from different regions
Sample OTUs Alpha diversity
Chao1 Ace Simpson Shannon
HY 22829 1181.17±55.17 1867.05±88.98 0.991±0.006 7.87±0.48
XJ 30400 497.00±43.00 665.59±50.52 0.875±0.075 5.40±0.40
LD 30426 990.22±36.73 1387.74±137.22 0.979±0.057 7.60±0.46
JY 23655 1212.17±286.23 1827.03±771.01 0.986±0.067 8.27±0.48
PY 20822 1282.33±155.39 1754.88±219.63 0.981±0.100 8.13±0.47
YZ 22527 781.67±185.85 1048.09±241.77 0.973±0.120 7.20±0.64
*where the two letter prefix denotes the location from where the mouse was captured. HY: Haiyuan county (海原县); XJ: Xiji county (西吉县); LD: Longde county (隆德县); JY: Jingyuan county (泾源县); PY: Pengyang county (彭阳县); YZ: Yuanzhou county (原州区).


表选项






表 2. 不同县(区)甘肃鼢鼠肠道样品Alpha多样性指数LSD分析表 Table 2. Multiple comparisons of Alpha diversity index in Gansu Zokor intestinal samples from different counties
Alpha index Mean (i–j) (P) YZ (j) PY (j) JY (j) LD (j)
Chao1 HY (i) 262.9 (0.17) –183.7 (0.33) –167.6 (0.37) 54.4 (0.77)
LD (i) 208.5 (0.28) –238.1 (0.22) –222.0 (0.24)
JY (i) 430.5 (0.04) –16.2 (0.93)
PY (i) 446.7 (0.03)
Ace HY (i) 576.7 (0.11) –130.0 (0.70) –202.2 (0.55) 237.1 (0.49)
LD (i) 339.6 (0.33) –367.1 (0.29) –439.3 (0.21)
JY (i) 778.9 (0.04) 72.2 (0.83)
PY (i) 706.8 (0.06)
Simpson HY (i) –0.86 (0.00) –0.91 (0.00) –0.92 (0.00) –0.88 (0.00)
LD (i) 0.03 (0.48) –0.03 (0.48) –0.04 (0.37)
JY (i) 0.06 (0.13) 0.01 (0.85)
PY (i) 0.06 (0.17)
Shannon HY (i) 0.67 (0.34) –0.27 (0.70) –0.40 (0.56) 0.27 (0.70)
LD (i) 0.40 (0.56) –0.53 (0.44) –0.67 (0.34)
JY (i) 1.07 (0.14) 0.13 (0.85)
PY (i) 0.93 (0.19)
*where the two letter prefix denotes the location from where the mouse was captured. HY: Haiyuan county (海原县); XJ: Xiji county (西吉县); LD: Longde county (隆德县); JY: Jingyuan county (泾源县); PY: Pengyang county (彭阳县); YZ: Yuanzhou county (原州区).


表选项






不同县(区)甘肃鼢鼠肠道细菌群落丰度如图 1所示。在门水平上(图 1-A),厚壁菌门(Firmicutes)在所有样品肠道中均为优势菌,其次为拟杆菌门(Bacteroidetes)和变形菌门(Proteobacteria);在属水平(图 1-B),梭菌目未分类属(Clostridium Incertae Sedis)所占比例最大,其次是S24-7 Incertae Sedis、瘤胃菌科(Ruminococcaceae Incertae Sedis)未分类属、颤螺菌属(Oscillospira)、脱硫弧菌属(Desulfovibrio)、瘤胃球菌属(Ruminococcus)、梭菌属(Fusobacterium)和梭状杆菌属(Clostridium)。对5个县(区)(西吉县组除外)鼢鼠肠道细菌群落丰度进行差异分析,结果表明,在门水平,甘肃鼢鼠肠道细菌群落丰度在5个县(区)组没有显著性差异(P>0.05);在属水平,甘肃鼢鼠肠道细菌群落丰度在5个县(区)组没有显著性差异(P>0.05),仅小类的假单孢菌属(Pseudomonas)的丰度在海原县和彭阳县中存在显著差异(FHY-PY=0.001,P=0.037)。
图 1 不同地域甘肃鼢鼠盲肠细菌类群在门水平和属水平丰度 Figure 1 Taxonomic analysis of the Eospalax cansus cecum microbiota of each sample for 6 counties of Liupan Mountain. Bar charts represent the relative abundance of bacterial phyla (A) and genus (B) in 16 samples from 16 mice. Where the one letter prefix denotes the location from where the mouse was captured and the one digit number is the unique mouse identifier. H: Haiyuan county (海原县); X: Xiji county (西吉县); L: Longde county (隆德县); J: Jingyuan county (泾源县); P: Pengyang county (彭阳县); Y: Yuanzhou county (原州区). For a bacterial genus to be shown its abundance was 1% in at least one sample; bacterial genus whose abundance was below this criterion are grouped in the category "other".
图选项






2.2.2 Beta多样性的分析: 为了进一步了解甘肃鼢鼠肠道细菌群落结构在地域上的差异,根据加权的UniFrac距离矩阵NMDS分析方法,通过对样本距离进行等级排序,使样本在低维空间中的排序反映彼此之间的距离远近的关系,NMDS分析中两点之间的距离越近,2个样本之间的细菌群落结构相似度越高,差异越小。UniFrac距离矩阵NMDS分析显示,彭阳县、隆德县和泾源县三县样品间距离接近,说明这3个县样品组间的肠道细菌群落结构更加相似。海原县样品组内距离相对较小,说明海原县甘肃鼢鼠肠道细菌群落结构在组内相似性大,但与彭阳县、隆德县和泾源县三县样品间距离较远,细菌群落结构相似度低;西吉县和原州区2个组的样品组内距离较大,细菌群落结构相似度低,没有规律性(图 2)。
图 2 基于UniFrac的加权NMDS分析在不同地理种群间的分化 Figure 2 Weighted NMDS analysis based on UniFrac in different regions.
图选项





2.3 甘肃鼢鼠雌雄间肠道细菌群落的多样性差异分析
2.3.1 Alpha多样性指数及样品的OTU丰度差异分析: 根据雌雄鼢鼠间肠道样品OTUs和Alpha多样性指数表(表 3),对雌雄鼢鼠间样品的各数值进行T检验分析,结果发现雌雄鼢鼠间样品在Chao1、ACE、Simpson和Shannon都没有显著性差异(P>0.05),说明甘肃鼢鼠肠道样品细菌群落的多样性、优势菌聚集度及均匀度在雌雄鼢鼠间没有显著性差异。
表 3. 雌雄鼠间肠道菌群的样品OTUs和Alpha多样性指数表 Table 3. OTUs richness and diversity indices obtained from pyrosequencing analysis for female and male
Sample OTUs Alpha diversity
Chao1 Ace Simpson Shannon
Famle 2772 1342.61±72.83 2037.88±157.92 0..99±0.00 8.44±0.18
Male 2666 1339.22±67.29 2110.71±170.44 0..99±0.00 8.56±0.12
P 0.446 0.973 0.762 0.704 0.622


表选项






根据甘肃鼢鼠雌雄性肠道细菌群落的丰度图,对雌性和雄性菌群进行T检验分析,结果显示:在门水平(图 3-A)和属水平(图 3-B),雌雄鼢鼠间细菌群落的丰度没有显著性差异(P>0.05)。
图 3 不同性别甘肃鼢鼠盲肠细菌类群门水平和属水平丰度图 Figure 3 Taxonomic analysis of the Eospalax cansus cecum microbiota of each sample for different gender. Bar charts represent the relative abundance of bacterial phyla (A) and genus (B) in 18 samples from 18 Gansu zokors. Where the one letter prefix denotes the location from where the mouse was captured and the one digit number is the unique mouse identifier. X: Xiji county (西吉县); L: Longde county (隆德县); J: Jingyuan county (泾源县). For a bacterial genus to be shown its abundance was 1% in at least one sample; bacterial genus whose abundance was below this criterion are grouped in the category "other".
图选项






2.3.2 Beta多样性分析: 为进一步了解细菌群落结构在不同性别组间的差异性,基于加权的UniFrac距离矩阵进行NMDS分析,结果显示,雌性组样品在NMDS分析图中分布较聚集,样品间距离接近,而雄性组样品分散,样品间距离较远,说明雌性甘肃鼢鼠肠道细菌群落结构相似性高,而雄性细菌群落结构在样品间差异较大(图 4)。
图 4 基于UniFrac的加权NMDS分析在雌雄鼠间的分化 Figure 4 Weighted NMDS analysis based on UniFrac in famle and male.
图选项





2.4 不同季节甘肃鼢鼠肠道细菌多样性差异分析
2.4.1 Alpha多样性指数及样品的OTU丰度差异分析: 根据不同季节甘肃鼢鼠肠道细菌群落的Alpha多样性指数表,对不同季节样品组的数值进行T检验分析,结果表明,在秋季组与春季组中,秋季具有更加明显多样化的细菌群落。其中Chao1、Ace和Shannon所展现出来的两组间的多样性差异显著(P<0.05),Simpson指数多样性分析未达到统计学差异,即甘肃鼢鼠肠道细菌的优势种集中度在春季组和秋季组中不具有显著性差异(P=0.173) (表 4)。
表 4. 不同季节甘肃鼢鼠肠道菌群的Alpha多样性指数表 Table 4. OTUs richness and diversity indices obtained from pyrosequencing analysis for different seasons
Sample OTUs Alpha diversity
Chao1 Ace Simpson Shannon
Spring 1739 950.14±125.00 1371.94±225.66 0.96±0.64 7.30±1.33
Autumn 2431 1342.61±72.82 2037.87±161.31 0.97±0.01 8.44±0.55
P 0.665 0.014 0.027 0.173 0.034


表选项






不同季节甘肃鼢鼠肠道细菌群落丰度图中,对春季和秋季的肠道细菌群落进行T检验,在门水平(图 5-A),Firmicutes的丰度在春季组显著高于秋季组(TS-A=0.073,P=0.029);在属水平(图 5-B),Lachnospiraceae Incertae Sedis(TS-A=0.073,P=0.031)和Ruminococcaceae Incertae Sedis (TS-A=0.19,P<0.05)的比例春季组明显高于秋季;而Oscillospira (TS-A=-0.030,P=0.025)的丰度秋季组高于春季组。
图 5 不同季节甘肃鼢鼠盲肠细菌类群门水平和属水平丰度图 Figure 5 Taxonomic analysis of the Eospalax cansus cecum microbiota of each sample for different seasons. Bar charts represent the relative abundance of bacterial phyla (A) and genus (B) in 14 samples from 14 mice. Where the one letter prefix denotes the location from where the mouse was captured and the one digit number is the unique mouse identifier. X: Xiji county (西吉县); L: Longde county (隆德县); J: Jingyuan county (泾源县). For a bacterial genus to be shown its abundance was 1% in at least one sample; bacterial genus whose abundance was below this criterion are grouped in the category "other".
图选项






2.4.2 Beta多样性分析: 为了评估甘肃鼢鼠肠道细菌群落结构在不同季节差异,基于加权的UniFrac距离矩阵进行NMDS分析,结果显示,秋季组样品在NMDS分析图中分布较聚集,样品间距离接近,而春季组样品分散,样品间距离较远,说明甘肃鼢鼠肠道细菌群落结构在秋季相似性高,而细菌群落结构在春季样品间差异较大,同时甘肃鼢鼠肠道细菌群落结构相似度秋季明显高于春季(图 6)。
图 6 基于UniFrac的加权NMDS分析在不同季节间的分化 Figure 6 Weighted NMDS analysis based on UniFrac in spring and autumn.
图选项





3 讨论 3.1 甘肃鼢鼠肠道细菌群落组成具有髙度的植食性适应 甘肃鼢鼠肠道菌群在门水平上,以分解利用植物的门类为优势种群。甘肃鼢鼠肠道细菌的优势门菌为Firmicutes和Bacteroidetes,两者占肠道总细菌的比例高达89%以上。这与马和驴肠道菌群的研究相似[28-30]。研究表明,胃肠道中的Firmicutes和Bacteroidetes有利于动物消化食物中的纤维素和半纤维素,李志鹏等[31]分析以柞树叶为食的梅花鹿瘤胃中的菌群发现,其中87.9%的16S rRNA基因序列都属于Bacteroidetes能降解纤维的菌种序列。Chen et al[32]发现,肉牛瘤胃中Firmicutes和Bacteroidetes随饲粮干草含量的增加而增加,Firmicutes的这一特性表现得尤其突出;在属水平上,Clostridiales菌科未分类属为优势属,研究表明Clostridiales菌科对提高消化纤维素和半纤维素为主的植物食物资源有利[33],其次是Ruminococcaceae Incertae Sedis,OscillospiraRuminococcus,Ruminococcaceae Incertae Sedis,OscillospiraRuminococcus均属于厚壁菌门。其中,Ruminococcus的主要成员为白色瘤胃球菌(Ruminobacter albus)和黄色瘤胃球菌(Ruminococcus Flavefaciens),它们是纤维降解过程被研究最多的菌株,是分解纤维素的优势菌[34-35],在纤维素和半纤维素的降解过程中最为重要,其分泌的纤维素酶的活性很高,而且还能够溶解微晶纤维素。Oscillospira多出现于食草动物的肠道,其通过利用动物来源的葡萄糖产生丁盐酸以供宿主基本的代谢[36],Lam等[37]发现Oscillibacter可增加小鼠肠道饱和脂肪的积累。因此,从甘肃鼢鼠肠道门和属水平所包含的优势菌门和优势菌属均表明其对植食性的高度适应。
3.2 不同县(区)的甘肃鼢鼠肠道细菌群落结构差异性不显著 基于加权的UniFrac距离的NMDS分析表明:隆德、泾源和彭阳3个组间的甘肃鼢鼠肠道菌群结构相似,而西吉和原州组内样品间菌群结构相似性差异过大,不具有代表性。海原组细菌群落结构较其他3个县差异较大,但组内样品细菌群落结构相似度高。隆德、泾源和彭阳3组样本在地理位置上距离相近,年降雨量均超过400 mm (500 mm–600 mm),气候等生态因素相近。海原县和西吉县均属于六盘山北段,分别位于六盘山系东坡和西坡,年降雨量低于400 mm[38]。因此,推测地理、气候等生态因素使得隆德县、泾源县和彭阳县3个县的甘肃鼢鼠肠道细菌群落结构更加相似;海原县与西吉县采样位置接近,但是西吉县样品测序数据OTU数和Alpha多样性指数过小,NMDS分析中组内差异过大,不具有代表性,不能用于与海原县样品细菌群落的比较分析;在不同县(区)甘肃鼢鼠肠道细菌群落丰度差异性分析中,在门水平和属水平上,6个县(区)的甘肃鼢鼠肠道细菌的丰度并没有显著性差异。6县(区)均在宁夏南部围绕六盘山分布,地理间距小,直线距离间距不超过百公里,植被种类分布无显著的差异[39],推测是甘肃鼢鼠肠道细菌群落多样性及丰度差异性在5个县(区)没有显著差异性原因,进一步也说明,甘肃鼢鼠肠道细菌群落多样性和丰度差异与食性相关。
3.3 甘肃鼢鼠的肠道细菌组成和结构在雌雄间差异不显著 雌雄性鼢鼠间肠道细菌群落的多样性和丰度无显著差异;在肠道细菌群落丰度差异性分析中,在门水平和属水平上,甘肃鼢鼠肠道细菌比例在雌性组和雄性组均未出现显著性的差异。根据加权的UniFrac距离的NMDS分析法表明甘肃鼢鼠雌性组样品组间的距离相比于雄性组更大。本研究雌性组和雄性组的样品均采自秋季,秋季活动节律以储存食物为主,繁殖次之[40]。在秋季储备食物阶段雄性甘肃鼢鼠跑动和挖掘等行为活动时间大于雌性鼢鼠,进食量大于雌性鼢鼠,需要大量进食,导致个体间取食植物资源种类有很大的差异性,因而使得肠道细菌群落结构的差异大于雌性鼢鼠。因此,雌性甘肃鼢鼠肠道细菌群落结构相似性高,而雄性细菌群落结构在样品间差异较大,这一结果有待今后更加深入的研究来解释。
3.4 甘肃鼢鼠肠道细菌群落结构对食物资源的动态变化的影响 甘肃鼢鼠肠道细菌组成和结构对食物资源的季节波动具有明显的响应。在生活习性上,甘肃鼢鼠春季、秋季活动频繁,尤以春季最为频繁[40];在食源上,甘肃鼢鼠喜食植物苦荬菜、刺儿菜、大蓟、蒲公英、本氏针茅、赖草等菊科植物,油松、樟子松和沙棘等次之[41]。秋季甘肃鼢鼠食物资源丰富,可取食植物根系种类繁多,植物种类较春季来说比较杂,这与我们在Alpha多样性分析中甘肃鼢鼠秋季样品的肠道菌群的多样性显著大于春季的结果相一致。在不同季节肠道细菌丰度的差异性分析中,Oscillospira的丰度秋季明显高于春季,Oscillospira对嫩叶和草根中的碳水化合物和单糖具有更高的利用效率[42],有利于甘肃鼢鼠从植物的根系及嫩叶中获取能量;而Lachnospiraceae Incertae Sedis和Ruminococcaceae Incertae Sedis的丰度在春季高于秋季,春季(四月份)相较秋季食物资源匮乏,同时,甘肃鼢鼠进入繁殖期,能量需求增加,其主要以取食油松、樟子松、山杏、山桃等造林树种的根皮为主,其根系的纤维素含量在50%以上[43],草本植物根系的纤维素及半纤维素含量均在14%–34%[44]。因此,推测Lachnospiraceae和Ruminococcaceae比例的升高有利于甘肃鼢鼠消化富含纤维素和半纤维素的油松的根等食物;基于加权的UniFrac距离的加权NMDS分析显示,甘肃鼢鼠肠道细菌群落结构的相似度秋季大于春季,在春季,大地未解冻前,因需恢复冬季寒冷产生的能量损失,鼢鼠需要大量进食,以便为繁殖期做准备。但是,草本植物还未长成,鼢鼠需要四处行走觅食,因树种及进食量的差异,导致个体间取食植物资源种类有很大的差异性,故其肠道细菌群落结构差异性较大。在秋季,食物资源丰富,有丰富的草本及灌木丛植物的根系为食,因此甘肃鼢鼠肠道细菌群落的相似度较高。

References
[1] 孙丙华. 社群环境下的短尾猴肠道微生物群落结构及适应进化. 安徽大学博士学位论文, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10357-1016127603.htm
[2] B?ckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI. The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(44): 15718-15723. DOI:10.1073/pnas.0407076101
[3] Rawls JF, Mahowald MA, Ley RE, Gordon JI. Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell, 2006, 127(2): 423-433. DOI:10.1016/j.cell.2006.08.043
[4] Kovacs A, Ben-Jacob N, Tayem H, Halperin E, Iraqi FA, Gophna U. Genotype is a stronger determinant than sex of the mouse gut microbiota. Microbial Ecology, 2011, 61(2): 423-428. DOI:10.1007/s00248-010-9787-2
[5] Benson AK, Kelly SA, Legge R, Ma FR, Low SJ, Kim J, Zhang M, Oh PL, Nehrenberg D, Hua KJ, Kachman SD, Moriyama EN, Walter J, Peterson DA, Pomp D, Mackay TFC. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(44): 18933-18938. DOI:10.1073/pnas.1007028107
[6] Muegge BD, Kuczynski J, Knights D, Clemente JC, González A, Fontana L, Henrissat B, Knight R, Gordon JI. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science, 2011, 332(6032): 970-974. DOI:10.1126/science.1198719
[7] de Filippo C, Cavalieri D, di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from europe and rural africa. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(33): 14691-14696. DOI:10.1073/pnas.1005963107
[8] Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, Sinha R, Gilroy E, Gupta K, Baldassano R, Nessel L, Li H, Bushman FD, Lewis JD. Linking long-term dietary patterns with gut microbial enterotypes. Science, 2011, 334(6052): 105-108. DOI:10.1126/science.1208344
[9] Fushuku S, Fukuda K. Gender difference in the composition of fecal flora in laboratory mice, as detected by denaturing gradient gel electrophoresis (DGGE). Experimental Animals, 2008, 57(5): 489-493. DOI:10.1538/expanim.57.489
[10] David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ. Diet rapidly and reproducibly alters the human gut microbiome. Nature, 2014, 505(7484): 559-563. DOI:10.1038/nature12820
[11] Lankau EW, Hong PY, Mackie RI. Ecological drift and local exposures drive enteric bacterial community differences within species of Galápagos iguanas. Molecular Ecology, 2012, 21(7): 1779-1788. DOI:10.1111/mec.2012.21.issue-7
[12] Phillips CD, Phelan G, Dowd SE, McDonough MM, Ferguson AW, Delton Hanson J, Siles L, Ordó?ez-Garza N, San Francisco M, Baker RJ. Microbiome analysis among bats describes influences of host phylogeny, life history, physiology and geography. Molecular Ecology, 2012, 21(11): 2617-2627. DOI:10.1111/j.1365-294X.2012.05568.x
[13] Sudakaran S, Salem H, Kost C, Kaltenpoth M. Geographical and ecological stability of the symbiotic mid-gut microbiota in European firebugs, Pyrrhocoris apterus (Hemiptera, Pyrrhocoridae). Molecular Ecology, 2012, 21(24): 6134-6151. DOI:10.1111/mec.12027
[14] Sun BH, Wang X, Bernstein S, Huffman MA, Xia DP, Gu ZY, Chen R, Sheeran LK, Wagner RS, Li JH. Marked variation between winter and spring gut microbiota in free-ranging Tibetan Macaques (Macaca thibetana). Scientific Reports, 2016, 6: 26035. DOI:10.1038/srep26035
[15] Costello EK, Stagaman K, Dethlefsen L, Bohannan BJM, Relman DA. The application of ecological theory toward an understanding of the human microbiome. Science, 2012, 336(6086): 1255-1262. DOI:10.1126/science.1224203
[16] Freire AC, Basit AW, Choudhary R, Piong CW, Merchant HA. Does sex matter? The influence of gender on gastrointestinal physiology and drug delivery. International Journal of Pharmaceutics, 2011, 415(1/2): 15-28.
[17] Han CX, Yang XJ, Wang MC, Yang QE. Study on the differential character of major rodent. Journal of Northwest Forestry University, 2002, 17(3): 48-52. (in Chinese)
韩崇选, 杨学军, 王明春, 杨清娥. 主要啮齿动物的特异性研究. 西北林学院学报, 2002, 17(3): 48-52.
[18] Barnes EM, Burton GC. The effect of hibernation on the Caecal Flora of the thirteen-lined ground squirrel (Citellus tridecemlineatus). Journal of Applied Bacteriology, 1970, 33(3): 505-514. DOI:10.1111/jam.1970.33.issue-3
[19] Wang Q, Yang ZJ, Li JG, He JP. Seasonal variations of morphological features and tissue structures of the digestive tract in Gansu zokor (Myospalax cansus). Chinese Journal of Zoology, 2016, 51(4): 573-582. (in Chinese)
王倩, 杨佐娟, 李金钢, 何建平. 甘肃鼢鼠适应地下生活的消化道形态和结构的季节可塑性. 动物学杂志, 2016, 51(4): 573-582.
[20] Wang J, Fan WW, Yang ZJ, He JP. Study on the histological characteristics of Gansu zokor's digestive tract. Journal of Shaanxi Normal University(Natural Science Edition), 2010, 38(5): 65-67. (in Chinese)
王剑, 樊魏伟, 杨佐娟, 何建平. 甘肃鼢鼠消化道的组织结构. 陕西师范大学学报(自然科学版), 2010, 38(5): 65-67.
[21] Yang CH, Du YR, Lin GH, Su JP, Zhang TZ. Histological structure comparison of the small intestine between Gansu zokor (Myospalax cansus) and plateau zokor (Myospalax baileyi). Acta Theriologica Sinica, 2013, 33(2): 172-177. (in Chinese)
杨传华, 都玉蓉, 林恭华, 苏建平, 张同作. 甘肃鼢鼠和高原鼢鼠小肠组织学结构的比较. 兽类学报, 2013, 33(2): 172-177.
[22] 杨佐娟. 甘肃鼢鼠胃肠道适应性变化的初步研究. 陕西师范大学硕士学位论文, 2007. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1167540
[23] 段旭. 六盘山地区水文要素坡面变化. 中国林业科学研究院博士学位论文, 2011. http://cdmd.cnki.com.cn/Article/CDMD-82201-1011247194.htm
[24] 王云霓. 宁夏六盘山主要树种及典型森林植被的水分利用效率研究. 中国林业科学研究院硕士学位论文, 2012 http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D603544
[25] Pan S, Yu PT, Wang YH, Wang ZY, Yuan CX, Yu ZJ, Hu YQ, Xiong W, Xu LH. Spatial distribution of carbon density for forest vegetation and the influencing factors in Liupan Mountains of Ningxia, NW China. Acta Ecologica Sinica, 2014, 34(22): 6666-6677. (in Chinese)
潘帅, 于澎涛, 王彦辉, 王占印, 袁彩霞, 余治家, 胡永强, 熊伟, 徐丽宏. 六盘山森林植被碳密度空间分布特征及其成因. 生态学报, 2014, 34(22): 6666-6677.
[26] Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pe?a AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. QⅡME allows analysis of high-throughput community sequencing data. Nature Methods, 2010, 7(5): 335-336. DOI:10.1038/nmeth.f.303
[27] Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 2010, 26(19): 2460-2461. DOI:10.1093/bioinformatics/btq461
[28] Costa MC, Arroyo LG, Allen-Vercoe E, St?mpfli HR, Kim PT, Sturgeon A, Weese JS. Comparison of the fecal microbiota of healthy horses and horses with colitis by high throughput sequencing of the V3-V5 region of the 16S rRNA gene. PLoS One, 2012, 7(7): e41484. DOI:10.1371/journal.pone.0041484
[29] Steelman SM, Chowdhary BP, Dowd S, Suchodolski J, Jane?ka JE. Pyrosequencing of 16S rRNA genes in fecal samples reveals high diversity of hindgut microflora in horses and potential links to chronic laminitis. BMC Veterinary Research, 2012, 8: 231. DOI:10.1186/1746-6148-8-231
[30] Liu XF, Fan HL, Ding XB, Hong ZS, Nei YW, Liu ZW, Li GP, Guo H. Analysis of the gut microbiota by high-throughput sequencing of the V5-V6 regions of the 16S rRNA gene in donkey. Current Microbiology, 2014, 68(5): 657-662. DOI:10.1007/s00284-014-0528-5
[31] Li ZP, Liu HL, Cui XZ, Jing Y, Bao K, Xu C, Yang FH, Li GY. Bacterial diversity in rumen of sika deer (Cervus nippon) based on l6S rRNA sequences analysis. Chinese Journal of Animal Nutrition, 2013, 25(9): 2044-2050. (in Chinese)
李志鹏, 刘晗璐, 崔学哲, 荆祎, 鲍坤, 徐超, 杨福合, 李光玉. 基于16S rRNA基因序列分析梅花鹿瘤胃细菌多样性. 动物营养学报, 2013, 25(9): 2044-2050.
[32] Chen YH, Penner GB, Li MJ, Ob M, Guan LL. Changes in bacterial diversity associated with epithelial tissue in the beef cow rumen during the transition to a high-grain diet. Applied and Environmental Microbiology, 2011, 77(16): 5770-5781. DOI:10.1128/AEM.00375-11
[33] Van Dyke MI, McCarthy AJ. Molecular biological detection and characterization of clostridium populations in municipal landfill sites. Applied and Environmental Microbiology, 2002, 68(4): 2049-2053. DOI:10.1128/AEM.68.4.2049-2053.2002
[34] Kohl KD, Miller AW, Marvin JE, Mackie R, Dearing MD. Herbivorous rodents (Neotoma spp.) harbour abundant and active foregut microbiota. Environmental Microbiology, 2014, 16(9): 2869-2878. DOI:10.1111/emi.2014.16.issue-9
[35] Koike S, Kobayashi Y. Development and use of competitive PCR assays for the rumen cellulolytic bacteria:Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS Microbiology Letters, 2001, 204(2): 361-366. DOI:10.1111/fml.2001.204.issue-2
[36] Gophna U, Konikoff T, Nielsen HB. Oscillospira and related bacteria-from metagenomic species to metabolic features. Environmental Microbiology, 2017, 19(3): 835-841. DOI:10.1111/1462-2920.13658
[37] Lam YY, Ha CWY, Campbell CR, Mitchell AJ, Dinudom A, Oscarsson J, Cook DI, Hunt NH, Caterson ID, Holmes AJ, Storlien LH. Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfunction in diet-induced obese mice. PLoS One, 2012, 7(3): e34233. DOI:10.1371/journal.pone.0034233
[38] Li JY. Variation characteristics of ecological water requirement about forest and grass in the central and Southern Ningxia. Yellow River, 2016, 38(12): 116-121. (in Chinese)
李金燕. 宁夏中南部干旱区林草植被生态需水变化研究. 人民黄河, 2016, 38(12): 116-121. DOI:10.3969/j.issn.1000-1379.2016.12.027
[39] Gao ZZ. Analysis on the distribution law of mountainous vegetation in Ningxia. Ningxia Journal of Agriculture and Forestry Science and Technology, 1983(6): 1-6. (in Chinese)
高正中. 宁夏山地植被分布规律解析. 宁夏农林科技, 1983(6): 1-6.
[40] Li JG, He JP, Wang TZ. Behavioural activity rhythm of the Gansu zokor (Myospalax cansus) in summer and autumn under the cage condition. Journal of Northwest University (Natural Science Edition), 2003, 33(2): 217-222. (in Chinese)
李金钢, 何建平, 王廷正. 笼养条件下甘肃鼢鼠夏秋季行为活动节律. 西北大学学报(自然科学版), 2003, 33(2): 217-222.
[41] Chen XD, Hu ZL, Wang MC, Han CX, Yang XJ, Cao F. Study on the feeding habits and appetite of Gansu sokhor in the forested land of Norther Shaanxi. Shaanxi Forest Science and Technology, 1994(1): 44-45. (in Chinese)
陈孝达, 胡忠朗, 王明春, 韩崇选, 杨学军, 曹锋. 陕北林区甘肃鼢鼠的食性及食量研究. 陕西林业科技, 1994(1): 44-45.
[42] 刘占英. 绵羊瘤胃主要纤维降解细菌的分离鉴定及不同氮源对其纤维降解能力的影响. 内蒙古农业大学博士学位论文, 2008. http://cdmd.cnki.com.cn/article/cdmd-10129-2009057797.htm
[43] Zhu JQ, Wang YQ, Wang YJ, Zhang HL, Bai XQ, Li YP, Liu Y. Effect of root main component content on its soil-binding capacity. Bulletin of Soil and Water Conversation, 2014, 34(3): 166-170. (in Chinese)
朱锦奇, 王云琦, 王玉杰, 张会兰, 白雪琪, 李云鹏, 刘勇. 根系主要成分含量对根系固土效能的影响. 水土保持通报, 2014, 34(3): 166-170.
[44] Ye C, Guo ZL, Cai CF, Yan FL, Ma ZH. Relationship between root tensile mechanical properties and main chemical components of five herbaceous species. Pratacultural Science, 2017, 34(3): 598-606. (in Chinese)
叶超, 郭忠录, 蔡崇法, 闫峰陵, 马中浩. 5种草本植物根系理化特性及其相关性. 草业科学, 2017, 34(3): 598-606.

相关话题/甘肃 结构 植物 资源 环境