|
文章导读 |
|
摘要采用压敏漆(PSP)实验技术测量某F级重型燃气轮机第一级透平静叶前缘和压力面的气膜冷却效率及叶片表面压力分布,初步检验静叶前缘和压力面的整体气膜冷却效果,探讨吹风比、密度比和供气方式等参数对前缘及压力面气膜冷却特性的影响。结果表明: 前缘气膜孔采用交错布置,气膜冷却效率分布相对均匀,同时部分未被完全掺混的冷气在下游压力面产生气膜覆盖,随着吹风比增大,前缘冷却喷射在压力面的气膜覆盖范围增大且强度增强,由于受到叶栅通道涡的影响,气膜覆盖区域往下游向中间聚拢,形成气膜三角区; 压力面逐排供气意在探讨各排孔在不同吹风比和密度比条件下的基本冷却特性,成型孔的布置使得冷却效率由吹风比主导,各排孔的气膜冷却效率随着吹风比增大而增大; 相比于逐排供气,多排孔连供更接近于燃气轮机的真实运行环境,表征了各排孔相互干涉条件下的整体气膜冷却效率分布,多排联供使得冷气在下游逐渐形成累积,近尾缘区域之后表现得尤为明显,同时气膜冷却效率的累积特性基本符合“Shettle superposition”规律。
|
关键词 :燃气轮机,静叶前缘,静叶压力面,气膜冷却 |
Abstract:The film cooling effectiveness distributions on the leading edge and the pressure side of a turbine vane are tested using pressure sensitive paint (PSP) for various blowing ratios and density ratios. A uniform effectiveness distribution is obtained along the leading edge by proper arrangement of the film cooling holes. The film cooling flow distribution on the pressure side from the leading edge injections is related to the blowing ratios with higher blowing ratios given wider coverage. The coolant injections on the pressure side are supplied independently for each row of holes to conveniently and accurately control the local flow parameters. This paper presents the film cooling efficiencies for each injection row for different blowing ratios and density ratios. The film cooling performance on the pressure side is most strongly related to the blowing ratio since the injected coolant remains in good contact with the wall with this hole shape arrangement. When the coolant is injected through all the holes together, the film cooling effectiveness downstream can be predicted using Shettle superposition.
|
Key words:gas turbineleading edgepressure sidefilm cooling |
收稿日期: 2013-12-26 出版日期: 2015-03-17 |
基金资助:国家自然科学基金项目(51376099) |
[1] | Goldstein R J. Film cooling[J]. Advances in Heat Transfer, 1971, 7: 321-379. |
[2] | Han J C, Sandip S E. Gas Turbine Heat Transfer and Cooling Technology[M]. New York: Taylor & Francis, 2000. |
[3] | Walters D K, Leylek J H. A detailed analysis of film-cooling physics, part i: Streamwise injection with cylindrical holes[J]. Journal of Turbomachinery, 2000, 122(1): 102-112. |
[4] | Hyams D G, Leylek J H. A detailed analysis of film cooling physics, part iii: Streamwise injection with shaped holes[J]. Journal of Turbomachinery, 2000, 122(1): 122-132. |
[5] | Bunker R S. A review of shaped hole turbine film-cooling technology[J]. Journal of Heat Transfer, 2005, 127(4): 441-453. |
[6] | Goldstein R J, Eckert E R G, Burggraf F. Effects of hole geometry and density on three-dimensional film cooling[J]. International Journal of Heat and Mass Transfer, 1974, 17(5): 595-607. |
[7] | Goldstein R J, Taylor J R. Mass transfer in the neighborhood of jets entering a crossflow[J]. Journal of Heat Transfer, 1982, 104(4): 715-721. |
[8] | Zhang L, Jaiswal J, Sharma R. Turbine nozzle endwall film cooling study using pressure-sensitive paint[J]. Journal of Turbomachinery, 2001, 123(4): 730-738. |
[9] | HAN Chang, REN Jing, JIANG Hongde. Multi-parameter influence on combined-hole film cooling system[J]. International Journal of Heat and Mass Transfer, 2012, 55(12): 4232-4240. |
[10] | HAN Chang, LI Jia, LI Xueying, et al.Characteristic of double-jet film cooling tested by pressure sensitive paint[J]. Journal of Aerospace Power, 2010, 25(12): 2770-2778. |
[11] | LI Jia, REN Jing, JIANG Hongde. Film cooling performance of the embedded holes in trenches with compound angles [C]//Proceedings of ASME EXPO 2010. Glasgow, UK, 2010. |
[12] | HAN Chang, REN Jing, JIANG Hongde. Multi-parameter influence on film cooling of blade tip[J]. Journal of Engineering Thermophysics and Mass Transfer, 2012, 33(9): 1501-1504. |