|
文章导读 |
|
摘要在弱酸性条件下氢氧化铁沉淀物对钼酸根离子具有吸附作用,本文研究弱酸性铁盐混凝沉淀过滤工艺对含钼废水及水源钼污染的饮用水应急处理效果。通过调节原水pH值,研究pH对铁盐除钼效果的影响。在最适pH条件下,通过投加不同混凝剂,研究铁盐对钼的去除规律,探讨去除原理。结果显示在弱酸性条件下,铁盐混凝沉淀法除钼是表面电化学吸附过程,符合Langmuir吸附等温线方程。pH是重要工艺参数,最佳pH范围为4~4.5。弱酸性铁盐混凝沉淀过滤工艺可以与水厂常规处理工艺结合,有效应对原水微量钼超标问题,保障供水安全。采用该工艺处理高浓度含钼废水时,在最适pH条件下,投加适当铁盐混凝剂,一级混凝沉淀出水可以满足废水排放标准要求,但难以满足地表水水环境质量要求。为满足地表水环境质量标准要求,可采用二级混凝沉淀串联处理。该工艺除钼所需构筑物简单,药剂投量有限。
|
关键词 :废水处理,钼,铁盐混凝,饮用水安全 |
Abstract:Weak acidic iron coagulation sedimentation and filtration were used to treat molybdenum containing wastewater and drinking water. The solution pH was adjusted to study the influence of pH on molybdenum removal. The rule of iron coagulant to remove molybdenum use various pH and iron concentrations to study the removal efficiency. The results show that the molybdenum removal mechanism is a surface electrochemical adsorption process that could be fit by a Langmuir adsorption isotherm. The solution pH controls the process and the optimum pH ranges from 4.0 to 4.5. This process, which can be combined with conventional water plant treatments, can protect drinking water safety when the raw water contains trace molybdenum pollution. The molybdenum concentration of the effluent water will exceed the standards using only process for high concentration wastewater. Thus, secondary treatment is needed because there is equilibrium between the adsorption capacity and the effluent concentration. This process can be conducted in a simple treatment structure with limited coagulant dosage.
|
Key words:wastewater treatmentsmolybdenumiron coagulationdrinking water safety |
收稿日期: 2013-08-14 出版日期: 2015-09-03 |
|
基金资助:国家水体污染控制与治理科技重大专项 (2008ZX07420-005) |
[1] | 邱岭, 殷立忠. 微量元素钼与人体健康[J]. 微量元素与健康研究, 2008, 25(5): 64-66. QIU Ling, YIN Lizhong. Molybdenum andhuman health[J]. Studies of Trace Elements and Health, 2008, 25(5): 64-66. (in Chinese) |
[2] | 白保璋. 钼在植物体中的生理作用[J]. 吉林农业大学学报, 1987, 9(3): 6-13. BAI Baozhang. The physiological role of Molybdenum in plants[J]. Acta Agriculturae Universitatis Jilinensis, 1987, 9(3): 6-13. (in Chinese) |
[3] | 张录强. 钼(Mo)的生理及其生物学效应[J]. 生物学通报, 1999, 34(11): 24-26. ZHANG Luqiang. The biological and physiological effects of Molybdenum (Mo)[J]. Bulletin of Biology, 1999, 34(11): 24-26. (in Chinese) |
[4] | 秦钰慧, 凌波, 张晓健. 饮用水卫生与处理技术 [M]. 北京: 化学工业出版社, 2002. QIN Yuhui, LIN Bo, ZHANG Xiaojian. Health and Treatment Technology for Drinking Water [M]. Beijing: Chemical Industry Press, 2002. (in Chinese) |
[5] | GB5749-2006. 生活饮用水卫生标准[S]. 北京: 中华人民共和国卫生部, 2006. GB5749-2006. Standards for Drinking Water Quality[S]. Beijing: Ministry of Health of the People’s Republic of China, 2006. |
[6] | GB3838-2002. 地表水环境质量标准[S]. 北京: 中华人民共和国环境保护部,2002. GB3838-2002.Environmental Quality Standards for Surface Water[S]. Beijing: Ministry of Environmental Protection of the People’s Republic of China, 2002. |
[7] | World Health Organization. Guidelines for Drinking-water Quality [M]. 4th ed. Geneva, Switzerland: World Health Organization Press, 2011. |
[8] | DB 21/1627-2008. 辽宁省污水综合排放标准[S]. 沈阳: 辽宁省环境保护局, 2008. DB 21/1627-2008. Integrated Wastewater Discharge Standards of Liaoning Province[S]. Shenyang: Department of Environmental Protection of Liaoning Province, 2008. |
[9] | 阎建伟, 张文钲. 钼化学品导论 [M]. 北京: 冶金工业出版社, 2008. YAN Jianwei, ZHANG Wenzheng. Introduction of Molybdenum Chemicals [M]. Beijing: Metallurgical Industry Press, 2008. (in Chinese) |
[10] | 向铁根, 杨伯华. 钼冶金[M]. 长沙: 中南大学出版社, 2009. XIANG Tiegen, YANG Bohua. MolybdenumMetallurgy [M]. Changsha: Central South University Press, 2009. (in Chinese) |
[11] | 许洁瑜, 杨刘晓, 王俊龙. 中国钼资源利用与可持续发展战略研究[J]. 中国钼业, 2005, 29(4): 3-9. XU Jieyu, YANG Liuxiao, WANG Junlong. Study on the utilization of chinaMolybdenum resources and sustainable development[J]. China Molybdenum Industry, 2005, 29(4): 3-9. (in Chinese) |
[12] | Lian J J, Xu S G, Zhang Y M, et al.Molybdenum(VI) removal by using constructed wetlands with different filter media and plants[J]. Water Science and Technology, 2013, 67(8): 1859-1866. |
[13] | Panayotova M, Panayotov V. An electrochemical method for decreasing the concentration of sulfate and molybdenum ions in industrial wastewater[J]. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances & Environmental Engineering, 2004, 39(1): 173-183. |
[14] | 苏维. 高纯二硫化钼生产中重金属离子废水处理[J]. 有色金属加工, 2008, 37(4): 58-60. SU Wei. Treatment of heavy metal ions wastewater from production of MoS2[J]. Nonferrous Metals Processing, 2008, 37(4): 58-60. (in Chinese) |
[15] | 张舞剑, 李姣. 镍钼矿冶炼废水的处理[J]. 湖南有色金属, 2010, 26(5): 42-45. ZHANG Wujian, LI Jiao. Treatment ofsmelting industrial wastewater of Nicke-l Molybdenum minerals[J]. Hunan Nonferrous Metals, 2010, 26(5): 42-45. (in Chinese) |
[16] | 唐丽霞, 周新文, 唐军利, 等. 纳滤膜处理含钼酸性废水的试验研究[J]. 中国钼业, 2009, 33(3): 27-29. TANG Lixia, ZHOU Xinwen, TANG Junli, et al.Study of nanofiltration on acid water containingMolybdenum[J]. China Molybdenum Industry, 2009, 33(3): 27-29. (in Chinese) |
[17] | 袁致涛,赵利勤,韩跃新,等. 混凝法处理朝阳新华钼矿尾矿水的研究[J]. 矿冶, 2007, 16(2): 57-61. YUAN Zhitao, ZHAO Liqin, HAN Yuexin, et al.Study on tailing water treatment of chaoyang xinhua molybdenum mine with coagulation[J]. Mining & Metallurgy, 2007, 16(2): 57-61. (in Chinese) |
[18] | ZHANG Xiaojian, CHEN Chao, LIN Pengfei, et al.Emergency drinking water treatment during source water pollution accidents in China: Origin analysis, framework and technologies[J]. Environmental Science & Technology, 2011, 45(1): 161-167. |
[19] | XU Nan, Braida W, Christodoulatos C, et al.A review of Molybdenum adsorption in soils/bed sediments: Speciation, mechanism, and model applications[J]. Soil & Sediment Contamination, 2013, 22(8): 912-929. |
[1] | 邓可欣. 基于超边图匹配的视网膜眼底图像配准算法[J]. 清华大学学报(自然科学版), 2014, 54(5): 568-574. | [2] | 王振波, 张君, 罗孙一鸣. 喷水法成型纤维网增强水泥基板材抗弯性能[J]. 清华大学学报(自然科学版), 2014, 54(5): 551-555. | [3] | 徐悟, 于清, 尧国皇. 初应力对钢管混凝土叠合柱轴压性能影响[J]. 清华大学学报(自然科学版), 2014, 54(5): 556-562. | [4] | 魏亚, 姚湘杰. 约束状态下混凝土拉伸徐变模型[J]. 清华大学学报(自然科学版), 2014, 54(5): 563-567. | [5] | 刘荣华, 魏加华, 翁燕章, 王光谦, 唐爽. HydroMP:基于云计算的水动力学建模及计算服务平台[J]. 清华大学学报(自然科学版), 2014, 54(5): 575-583. | [6] | 赵娜, 王兆印, 潘保柱, 李志威, 段学花. 小江流域不同强度河床结构的生态学作用[J]. 清华大学学报(自然科学版), 2014, 54(5): 584-589. | [7] | 杨汉波, 吕华芳, 胡庆芳, 雷慧闽, 杨大文. 华北平原的大气逆辐射参数化方法比较[J]. 清华大学学报(自然科学版), 2014, 54(5): 590-595. | [8] | 龙奋杰, 龙振兴, 王萧濛. 产权约束对景气市场住房报价的影响——基于Stein模型的改进与数值模拟[J]. 清华大学学报(自然科学版), 2014, 54(5): 596-601. | [9] | 张红, 张洋, 陈玄冰. 基于经济学实验的信息传递过程中北京二手房信息扩散程度测算[J]. 清华大学学报(自然科学版), 2014, 54(5): 602-606. | [10] | 杨宏伟, 王昊宇, 刘云霞, 刘文君, 杨少霞. O3-BAC工艺对含溴水体消毒副产物生成势的影响[J]. 清华大学学报(自然科学版), 2014, 54(5): 607-612. | [11] | 罗逍, 姚远, 张金换. 一种毫米波雷达和摄像头联合标定方法[J]. 清华大学学报(自然科学版), 2014, 54(3): 289-293. | [12] | 朱兵, 陈洵欢, 张文俊, 胡山鹰, 金涌. 中国合成氨行业清洁生产潜力分析[J]. 清华大学学报(自然科学版), 2014, 54(3): 309-313. | [13] | 陆瑶, 袁敏峰. 新股“破发”与IPO定价效率: 基于股东特征的分析[J]. 清华大学学报(自然科学版), 2014, 54(3): 381-393. | [14] | 张金换, 刘卫国, 李景涛, 赵福全. 行人头型冲击器试验有限元建模及敏感参数分析[J]. 清华大学学报(自然科学版), 2014, 54(3): 294-298. | [15] | 许述财, 邹猛, 魏灿刚, 王龙臻, 张金换, 于用军. 仿竹结构薄壁管的轴向耐撞性分析及优化[J]. 清华大学学报(自然科学版), 2014, 54(3): 299-304. |
|