删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

表面应变法无损测量颈椎间盘压强

清华大学 辅仁网/2017-07-07

表面应变法无损测量颈椎间盘压强
薛清华1,2,原芳2,3,廖振华2,顾洪生4,刘伟强2,3()
2. 深圳清华大学研究院,深圳 518057
3. 清华大学 生物医学工程系,北京 100084
4. 深圳市第二人民医院,深圳518049
Surface strain gauge method for noninvasive measurements of the cervical disc pressure
Qinghua XUE1,2,Fang YUAN3,Zhenhua LIAO2,Hongsheng GU4,Weiqiang LIU1,3()
1. State Key Laboratory of Tribology, Department of Precision Instrument and Mechanology, Tsinghua University, Beijing100084, China
2. Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
3. Department of Biomedical Engineering, Tsinghua University, Beijing100084, China
4. Shenzhen No. 2 People's Hospital, Shenzhen 518049, China

摘要:
HTML
输出: BibTeX | EndNote (RIS) 背景资料
文章导读
摘要为了解决现有颈椎间盘髓核压强测量方案在准确性或实施难度方面的局限性,该文提出表面应变无损测量法,即通过在椎间盘表面布置应变片,测量并求解椎间盘内部应变状态和微小运动,搭建椎间盘若干力学性质和具体参数的联系,进而推导出椎间盘内部压强变化情况。通过实验检验和精度标定,该方法的测量误差不超过15%,与有损直接测量方法的标定相关系数为0.79。精度和可重复性较传统测量方法有明显优势,为测量椎间压变化提供了无损伤的新手段。

关键词 椎间压,应变,算法,误差分析
Abstract:Existing cervical disc pressure measurement methods have limited accuracy. This paper presents a method to measure the pressure without damaging the disc via indirect measurements. The interior strain condition and the tiny motion of the cervical disc are measured by placing a strain gauge on the front surface of the disc. The mechanical property of the disc can then be used to calculate the disc pressure. The tests showed that the measurement error was less than 15% and the correlation coefficient with invasive direct measurements was 0.79. The precision and repeatability of the surface strain method are better than the traditional method. So, this provides a noninvasive way to measure the disc pressure.

Key wordsdisc pressurestrainmeasurement methoderror analyses
收稿日期: 2012-08-16 出版日期: 2015-09-03
ZTFLH: 
基金资助:“十二五”国家科技支撑计划资助项目(2012BAI18B05)
引用本文:
薛清华, 原芳, 廖振华, 顾洪生, 刘伟强. 表面应变法无损测量颈椎间盘压强[J]. 清华大学学报(自然科学版), 2014, 54(5): 690-694.
Qinghua XUE, Fang YUAN, Zhenhua LIAO, Hongsheng GU, Weiqiang LIU. Surface strain gauge method for noninvasive measurements of the cervical disc pressure. Journal of Tsinghua University(Science and Technology), 2014, 54(5): 690-694.
链接本文:
http://jst.tsinghuajournals.com/CN/ http://jst.tsinghuajournals.com/CN/Y2014/V54/I5/690


图表:
应变片布置示意图
模型变量 属性 单位 说明
la 已知量 Mm ac两应变片间距离
lb 已知量 Mm bc两应变片间距离
Z 测量量 Mm 椎间盘高度
εa 测量量 应变片输出值
εb 测量量 应变片输出值
εc 测量量 应变片输出值
εd 测量量 应变片输出值
εe 测量量 应变片输出值
γ 测量量 应变片输出值
α 中间未知量 (°) a点与X轴正向夹角
β 中间未知量 (°) b点与X轴正向夹角
ρα 中间未知量 mm a点与椭圆中心距离
ρβ 中间未知量 mm b点与椭圆中心距离
εN 中间未知量 轴向载荷引起的应变
ρx 中间未知量 mm 椎间盘中轴在YZ坐标
平面内曲率半径
ρy 中间未知量 mm 椎间盘中轴在XZ坐标
平面内曲率半径
A 目标未知量 mm 椎间盘椭圆长轴半径
B 目标未知量 mm 椎间盘椭圆短轴半径
dϕ 目标未知量 (°) 轴向扭转角度
dz 目标未知量 mm 轴向伸缩
dθx 目标未知量 (°) 屈伸角度
dθy 目标未知量 (°) 侧弯角度


模型物理量基本信息汇总
运动模式 主运动
变量
整个颈椎
总运动
测量节段
总运动
最小测
量步长
屈伸 dθx/(°) 约±9 ±1.5 0.3
侧弯 dθy/(°) 约±9 ±1.5 0.3
旋转 dφ/(°) 约±9 ±1.5 0.3
拉压 dz/(mm) ±1.2 ±0.2 0.04


运动加载信息汇总
γ/% εa/% εb/% εc/% εd/% εe/%
屈伸 C56 14.9 9.2 7.4 8.6 12.9
屈伸 C34 21.0 9.6 7.0 9.2 16.8
侧弯 C56 9.7 17.0 14.0 6.7
侧弯 C34 5.4 7.9 14.7 10.0
旋转 C56 4.3
旋转 C34 5.1
拉压 C56 6.5 4.9 4.9 6.8 8.5
拉压 C34 7.5 5.4 4.9 6.7 8.1


应变片理论输出值与实测值间的误差
工况 前屈 后伸 左弯 右弯 左转 右转 拉伸 压缩
全局应变系数ε 0.017 0.026 0.013 0.019 0.007 0.012 0.062 0.044
压强变化量/(MPa) 0.24 0.2 0.17 0.16 0.09 0.13 0.41 0.59


应变与压强之间的关系


参考文献:
[1] Shankar H, Scarlett J A, Abram S E. Anatomy and pathophysiology of intervertebral discdisease[J]. Techniques in Regional Anesthesia and Pain Management, 2009, 13: 67-75.
[2] Nachemson A, Elfstrom G. Intravital dynamic pressure measurementsin lumbar discs[J]. Scandinavian Journal of Rehabilitation Medicine Supplement, 1970, S1: 1-40.
[3] Farfan H F. Form and function of the musculoskeletal system as revealed by mathematical analysis of the lumbar spine[J]. Spine, 1995, 20(13): 1462-1474.
[4] Wilke H J, Neef P, Caimi M,et al.New in vivo measurements of pressures in the intervertebral disc in daily life[J]. Spine, 1999, 24(8): 755-762.
[5] Rohlmann A, Bergmann G, Graichen F. A spinalfixation device forin vivo load measurement[J]. Journal of Biomechanical Enginnering, 1994, 27(7): 961-967.
[6] Rohlmann A, Bergmann G, Graichen F, et al.Influence ofmuscle forces on loads in internal spinal fixation devices[J]. Spine, 1998, 23(5): 537-42.
[7] Jaumard N V, Bauman J A, Welch W C, et al. Pressure measurement in the cervical spinal facet joint [J]. Spine, 2011, 36(15): 1197-1203.
[8] Chang U K, Kim D H, Lee M C, et al.Changes in adjacent-level disc pressure and facet joint forceafter cervical arthroplasty compared with cervical discectomy and fusion[J]. Journal of Neurosurgery-Spine, 2007, 7: 33-39.
[9] Moore M K, Fulop S, Tabib-Azar M,et al.Piezoresistive pressure sensors in the measurement of intervertebraldisc hydrostatic pressure[J]. The Spine Journal, 2009, 9: 1030-1034.
[10] Dennison C R, Wild P M, Wilson D R, et al.A minimally invasive in-fiber Bragg grating sensor for intervertebral discpressure measurements[J]. Measurement Science and Technology, 2008, 19: 085201.
[11] DiAngelo D J, Foley K T, Faber H B. A multi-axis strut graft forcesensor to study loading mechanics of the instrumented cervicalspine [C]// Proceedings of the 44th Annual Meeting of the Orthopaedic Research Society. New Orleans, Louisiana, USA: Orthopaedic Research Society, 1998.
[12] Rundell S A,Auerbach J D, Balderston R A,et al.Total disc replacement positioning affects facet contact forces and vertebral body strains[J]. Spine, 2008, 33(23): 2510-2517.
[13] McGill S M. Loads on the lumbar spine and associated tissues [C]//Goel V K, Weinstein J N, ed. Biomechanics of the Spine: Clinicaland Surgical Perspective. Boca Raton, USA: Chemical Rubber Company Press, 1990: 65-96.
[14] Dolan P, Adams M A, Kingma I, et al.The validity of measurements of spinal loading during manualhandling [C]// Proceedings of the 44th Annual Meeting of the Orthopaedic Research Society. New Orleans, Louisiana, Chicago, USA: Orthopaedic Research Society, 1998.
[15] XUE Qinghua, LIU Weiqiang, LIAO Zhenhua. The method exploration for measuring the strain of the intervertebral disc[J].Modern Instrumentation, 2013, 2(2): 21-25.


相关文章:
[1]丁荣涛. 基于合作博弈的港口物流链云服务组织方法[J]. 清华大学学报(自然科学版), 2014, 54(3): 366-372.
[2]郝博, 王军, 王昭诚. 基于DTMB-A系统的高效频分多业务[J]. 清华大学学报(自然科学版), 2014, 54(2): 275-280.
[3]刘佳君, 孙振国, 张文增, 陈强. 两端吸附式爬壁机器人机械臂运动误差修正算法[J]. 清华大学学报(自然科学版), 2014, 54(2): 185-190.
[4]蔡东阳, 卓子寒, 王婕, 武建安, 唐劲天. 基于模拟退火算法的磁感应治疗热籽分布[J]. 清华大学学报(自然科学版), 2014, 54(2): 153-158.

相关话题/测量 未知 运动 深圳 清华大学