删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

两端吸附式爬壁机器人机械臂运动误差修正算法

清华大学 辅仁网/2017-07-07

两端吸附式爬壁机器人机械臂运动误差修正算法
刘佳君1,孙振国1(),张文增1,陈强1,2
2. 浙江清华长三角研究院, 嘉兴 314006
Error correction algorithm for manipulator of wall climbing robot with both ends having magnetic adsorption
Jiajun LIU1,Zhenguo SUN1(),Wenzeng ZHANG1,Qiang CHEN1,2
1. Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
2. Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China

摘要:
HTML
输出: BibTeX | EndNote (RIS) 背景资料
文章导读
摘要为了解决水轮机叶片坑内修焊空间加工作业需求,研制了适用于复杂曲面的两端吸附式爬壁机器人,该机器人由永磁间隙吸附式移动平台、多自由度机械臂(包括3个主动关节和3个被动关节)和永磁间隙吸附式末端作业单元组成。针对给定末端路径,这种结构的机器人需基于局部平面假设来完成主动关节的轨迹生成。但经仿真分析,在1.5 m半径外球面上的简化造成的误差达到5 mm以上,不满足修焊工艺要求精度。为此,提出在机械臂加工运动过程中,通过Jacobi矩阵将末端作业单元在Descartes坐标系下的误差转换为关节角修正量以完成动态修正的算法。仿真实验表明,该算法可有效降低运动路径误差至1 mm以下。

关键词 机器人,机械臂,复杂未知曲面,误差分析,修正
Abstract:A wall climbing robot with both ends using magnetic adsorption is developed for on-site hydraulic turbine blade repairs. The magnetic mobile platform has a multiple degrees of freedom (DOF) manipulator and an end operating unit. The manipulator has 3 active and 3 passive joints, so the trajectory planning method for a given working path assumes a local curve where the end effector of the manipulator works on a plane. However, simulations for a sphere with a 1.5 m curvature show that the path error due to this assumption is larger than 5 mm. A correction algorithm to reduce the error transforms the error from Cartesian space to the joint space through a Jacobian matrix. Simulations show that the error can be reduced to less than 1 mm by this algorithm.

Key wordsrobotmanipulatorcomplicated unknown curveerror analysiscorrection
收稿日期: 2013-10-10 出版日期: 2015-04-16
ZTFLH: 
基金资助:国家 “八六三” 高技术项目(2007AA04Z258);国家自然科学基金项目(50875147)
引用本文:
刘佳君, 孙振国, 张文增, 陈强. 两端吸附式爬壁机器人机械臂运动误差修正算法[J]. 清华大学学报(自然科学版), 2014, 54(2): 185-190.
Jiajun LIU, Zhenguo SUN, Wenzeng ZHANG, Qiang CHEN. Error correction algorithm for manipulator of wall climbing robot with both ends having magnetic adsorption. Journal of Tsinghua University(Science and Technology), 2014, 54(2): 185-190.
链接本文:
http://jst.tsinghuajournals.com/CN/ http://jst.tsinghuajournals.com/CN/Y2014/V54/I2/185


图表:
两端磁吸附式水轮机叶片坑内修焊作业机器人组成
机器人D-H坐标系及参数
i θi/(°) αi/(°) ai/mm di/mm
1 [-10,20] 90 68.5 0
2 [-60,60] 0 300 0
3 [-120,120] -90 119 -53.25
4 [-110,-70] 90 0 0
5 [70,110] 90 0 -181
6 [-120,120] 0 0 0


机械臂D-H参数
不同方向下路径误差e与运行距离的关系
误差修正算法仿真结果


参考文献:
[1] 桂仲成, 陈强, 孙振国, 等. 爬壁机器人的轮式移动机构的转向功耗[J]. 清华大学学报: 自然科学版, 2008, 48(2): 161-164. GUI Zhongcheng, CHEN Qiang, SUN Zhenguo, et al.Turning power losses in the wheeled locomotion mechanism for a wall climbing robot[J]. J Tsinghua Univ: Sci and Tech, 2008, 48(2): 161-164. (in Chinese)
[2] 徐佳, 孙振国, 陈强, 等. 水轮机叶片坑内修焊轮式移动机器人定位算法[J]. 清华大学学报: 自然科学版, 2008, 48(2): 171-165. XU Jia, SUN Zhenguo, CHEN Qiang, et al.Localization algorithm for wheeled mobile robot for on-site repair of hydraulic turbine blades[J]. J Tsinghua Univ: Sci and Tech, 2008, 48(2): 171-165. (in Chinese)〖WX)〗
[3] 马献德, 陈强, 孙振国, 等. 水轮机叶片坑内修复机器人姿态估计改进算法[J]. 清华大学学报: 自然科学版, 2011, 51(5): 697-701. MA Xiande, CHEN Qiang, SUN Zhenguo, et al.Improved pose estimation algorithm for an on-site turbine blade repair robot[J]. J Tsinghua Univ: Sci and Tech, 2011, 51(5): 697-701. (in Chinese)
[4] 项康泰, 孙振国, 戴红军, 等. 水轮机叶片修焊机器人控制系统研究 [C]// 第15次全国焊接学术会议论文集. 西宁, 2010. XIANG Kangtai, SUN Zhenguo, DAI Hongjun, et al. Research of control system of turbine blade repairing robot [C]// Proc 15th National Welding Conf. Xining, China, 2010. (in Chinese)
[5] Hazel B, Cote J, Laroche Y, et al.A portable, multiprocess, track-based robot for in situ work on hydropower equipment[J]. Journal of Field Robotics, 2012, 29(1): 69-101.
[6] Lessard J, Bigras P, Liu Z, et al.Characterization, modeling and vibration control of a flexible joint for a robotic system[J]. Journal of Vibration and Control, 2014, 20(6): 943-960.
[7] 桂仲成. 水轮机叶片坑内修复用爬壁机器人研究 [D]. 北京: 清华大学, 2006. GUI Zhongcheng. Study on Wall Climbing Robot for Hydraulic Turbine Blade On-Site Repair [D]. Beijing: Tsinghua University, 2006. (in Chinese)
[8] 马献德. 水轮机叶片修复机器人自主定位研究 [D]. 北京: 清华大学, 2011. MA Xiande. Research on the Self Localization of Mobile Robot for Hydraulic Turbine Blade On-Site Repair [D]. Beijing: Tsinghua University, 2011. (in Chinese)
[9] Peiper D L. The Kinematics of Manipulators under Computer Control [R]. Stanford, CA, USA: Stanford University, 1968.
[10] Jazar R N. Theory of Applied Robotics: Kinematics, Dynamics, and Control[M]. Berlin, Germany: Springer, 2007.
[11] Manocha D, Canny J F. Efficient inverse kinematics for general 6R manipulators[J]. IEEE Transactions on Robotics and Automation, 1994, 10(5): 648-657.
[12] 孙立宁, 任子武, 王振华. 基于混合类电磁机制算法的机械臂逆运动学解[J]. 机械工程学报, 2012(17): 21-28. SUN Lining, REN Ziwu, WANG Zhenhua. Inverse kinematics solution for robot manipulator based on hybrid electromagnetism-like mechanism algorithm[J]. Journal of Mechanical Engineering, 2012(17): 21-28. (in Chinese)


相关文章:
[1]邵君奕,张传清,陈雁,陈恳. 用于空间内曲面喷涂的冗余度机器人轨迹规划方法[J]. 清华大学学报(自然科学版), 2014, 54(6): 799-804.
[2]薛清华,原芳,廖振华,顾洪生,刘伟强. 表面应变法无损测量颈椎间盘压强[J]. 清华大学学报(自然科学版), 2014, 54(5): 690-694.
[3]潘玉龙,王国磊,朱丽,陈雁,陈恳. 管道喷涂机器人喷枪运动速度优化[J]. 清华大学学报(自然科学版), 2014, 54(2): 212-216.

相关话题/机械 运动 未知 空间 清华大学