|
文章导读 |
|
摘要采用方波脉冲信号作为激励获取导电介质的电阻抗信息时,方波信号频谱中高次谐波的幅值衰减一直是难以克服的问题。对一阶阻容型传感系统添加电感或电容元件构成二阶谐振单元,在激励信号的上、下沿处会出现自由衰减振荡信号,可使激励信号频谱在谐振单元的谐振频率附近得到增强。通过测量方波下降沿处自由衰减振荡信号第一个波峰的峰值电压,即可得到谐振单元中等效电阻的测量值。实验结果表明: 这种检测方式只需要数字电路产生固定频率的方波激励信号,即可实现30 kHz~1 MHz范围内的电阻测量,可用于电解质溶液、水、人体皮肤等介质电导率的有线及无线测量。
|
关键词 :方波脉冲,电导率,自由衰减振荡,峰值检测 |
Abstract:When a square wave pulsed signal is adopted as excitation to obtain electrical impedance information for a conductive medium, the amplitude decay of the higher harmonics in square wave spectrum can have a significant effect. Adding an inductor or capacitor to a first-order resistant-capacitive-type sensing system creates a second-order resonant element that creates a freely damped oscillating signal at both the rising and falling edges of the excitation. The excitation amplitude near the resonant frequency is, therefore, enhanced. The equivalent resistance in the resonant element can be obtained by measuring the first positive peak voltage of the freely damped signal at the falling edge of the pulse. Tests indicate that resistance measurements for frequencies from 30 kHz to 1 MHz can be implemented only by a fixed frequency square wave excitation signal generated by a digital circuit. This method can be used for conductivity measurements of conductive media, such as electrolyte solutions, water and human skin, using both wired and wireless transmitters.
|
Key words:square wave pulseconductivityfree damping oscillationpeak detection |
收稿日期: 2013-05-11 出版日期: 2015-04-16 |
|
基金资助:国家自然科学基金资助项目 (60971007, 61271129) |
[1] | Ma H, Lang J H, Slocum A H. Calibration-free measurement of liquid permittivity and conductivity using electrochemical impedance test cell with servomechanically adjustable cell constant[J]. IEEE Sensors Journal, 2009, 9(5): 515-524. |
[2] | Casalbore-Miceli G, Yang M J, Li Y, et al.A polyelectrolyte as humidity sensing material: Influence of the preparation parameters on its sensing property[J]. Sensors and Actuators B: Chemical, 2006, 114(2): 584-590. |
[3] | Zhang M, Hu C, Liu H, et al.A rapid-response humidity sensor based on BaNbO3nanocrystals[J]. Sensors and Actuators B: Chemical, 2009, 136(1): 128-132. |
[4] | Possetti G R C, Kamikawachi R C, Prevedello C L, et al. Salinity measurement in water environment with a long period grating based interferometer[J]. Measurement Science & Technology, 2009, 20, 0340033. |
[5] | Tsamis E D, Avaritsiotis J N. Design of planar capacitive type sensor for “water content” monitoring in a production line[J]. Sensors and Actuators A: Physical, 2005, 118(2): 202-211. |
[6] | Huang X, Yeo W, Liu Y, et al.Epidermal differential impedance sensor for conformal skin hydration monitoring[J]. Biointerphases, 2012, 7(1-4): 1-9. |
[7] | Hsu Y Y, Hoffman J, Ghaffari R, et al.Epidermal electronics: Skin sweat patch [C]//2012 7th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT). Taipei, China, 2012: 228-231. |
[8] | Huang T, Chou J, Sun T, et al.A device for skin moisture and environment humidity detection[J]. Sensors and Actuators B: Chemical, 2008, 134(1): 206-212. |
[9] | Qiao G, Wang W, Duan W, et al.Bioimpedance analysis for the characterization of breast cancer cells in suspension[J]. IEEE Transactions on Biomedical Engineering, 2012, 59(8): 2321-2329. |
[10] | Mishra V, Bouyad H, Halter R J. Electrical impedance-based biopsy for prostate cancer detection [C]//2011 37th Annual Northeast Bioengineering Conference (NEBEC). Troy, 2011: 1-2. |
[11] | Birlea N M, Birlea S I, Culea E. The skin's electrical time constants [C]//IFMBE Proceedings. Cluj Napoca, 2011, 36: 160-163. |
[12] | Yamamoto Y, Isshiki H, Nakamura T. Instantaneous measurement of electrical parameters in a palm during electrodermal activity[J]. IEEE Transactions on Instrumentation and Measurement, 1996, 45(2): 483-487. |
[13] | 董永贵, 孟凡. 电阻抗谱的分段测量方法及其实验研究 [C]//第9届全国信息获取与处理学术会议. 沈阳, 2011, 32(S12): 134-137. DONG Yonggui, MENG Fan. Segmented measurement method for electrical impedance spectroscopy and its experimental investigation [C]//The 9th National Conference on Information Acquisition and Processing. Shenyang, 2011, 32(S12): 134-137. (in Chinese). |
[14] | Yamamoto T, Yamamoto Y. Analysis for change of skin impedance[J]. Medical & Biological Engineering & Computing, 1977, 15(3): 219-227. |
[15] | Radosavljevic G J, Zivanov L D, Smetana W, et al.A wireless embedded resonant pressure sensor fabricated in the standard LTCC technology[J]. IEEE Sensors Journal, 2009, 9(12): 1956-1962. |
[1] | 王振波, 张君, 罗孙一鸣. 喷水法成型纤维网增强水泥基板材抗弯性能[J]. 清华大学学报(自然科学版), 2014, 54(5): 551-555. | [2] | 蔡志鹏, 吴健栋, 汤之南, 张伯奇, 潘际銮, 刘霞. 汽轮机焊接转子接头低周疲劳过程损伤变量的复合分析法[J]. 清华大学学报(自然科学版), 2014, 54(2): 178-184. | [3] | 刘佳君, 孙振国, 张文增, 陈强. 两端吸附式爬壁机器人机械臂运动误差修正算法[J]. 清华大学学报(自然科学版), 2014, 54(2): 185-190. | [4] | 赵海燕, 徐兴全, 于兴哲, 朱小武. 旋挖钻机钻杆键条焊接接头的残余应力[J]. 清华大学学报(自然科学版), 2014, 54(2): 191-196. | [5] | 彭卓, 邓焱, 马骋, 熊剑平, 尹永利. 基于FPGA的高精度正弦信号发生器设计与实现[J]. 清华大学学报(自然科学版), 2014, 54(2): 197-201. | [6] | 窦福印, 王鹏, 余兴龙. 提高角度法SPR检测系统分辨率的方法[J]. 清华大学学报(自然科学版), 2014, 54(2): 202-206. | [7] | 杨杰, 翁文国. 基于改进无偏灰色模型的燃气供气量的预测[J]. 清华大学学报(自然科学版), 2014, 54(2): 145-148. | [8] | 黄超, 黄全义, 申世飞, 疏学明. 突发事件案例表示方法[J]. 清华大学学报(自然科学版), 2014, 54(2): 149-152. | [9] | 蔡东阳, 卓子寒, 王婕, 武建安, 唐劲天. 基于模拟退火算法的磁感应治疗热籽分布[J]. 清华大学学报(自然科学版), 2014, 54(2): 153-158. | [10] | 陈利高, 刘晓波, 龚建, 王侃, 董传江, 荣茹, 鲁艺. 中子多重性探测器搭建及参数标定[J]. 清华大学学报(自然科学版), 2014, 54(2): 159-163. | [11] | 苏健, 曾志, 程建平, 李君利. Monte Carlo方法的最优源项偏倚抽样密度函数[J]. 清华大学学报(自然科学版), 2014, 54(2): 164-171. | [12] | 刘伟强, 蒲婷, 顾洪生, 廖振华, 姜锦鹏. 中国人颈椎间盘尺寸分析[J]. 清华大学学报(自然科学版), 2014, 54(2): 172-177. | [13] | 韩俊, 温风波, 赵广播. 小展弦比涡轮叶片的弯曲优化设计[J]. 清华大学学报(自然科学版), 2014, 54(1): 102-108. | [14] | 赵香花, 宋强, 刘文华. 35 kV链式STATCOM及其应用[J]. 清华大学学报(自然科学版), 2014, 54(1): 109-113. | [15] | 戴秋娟. 外资企业管理层的国企经验有效性分析——以在华日资企业为例(Ⅰ)[J]. 清华大学学报(自然科学版), 2014, 54(1): 114-120. |
|