3.中国科学院大学,北京 100049
1.Beijing Yunshui Haorui Environmental Technology Co., Ltd, Beijing 100015, China
2.Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
3.University of Chinese Academy of Sciences, Beijing 100049, China
将有机固废经热解转化为生物炭,具有改良土壤、促进碳固定、钝化重金属等优点,但有机固废生物炭中被钝化重金属进入土壤后生物有效性尚不明确。采用盆栽方法评估了施用市政污泥、中药渣等典型有机固废生物炭对受纳土壤中重金属有效性及植物吸收、传输重金属的影响。结果表明,施用污泥炭、中药渣炭显著增加了土壤中As、Zn的化学提取有效态含量,从而降低了Cr、Pb有效态含量(
< 0.05),对Cd、Cu、Ni有效态含量也有不同程度的降低趋势;同时,抑制了除Zn以外As、Cd、Cr、Cu、Ni、Pb等6种重金属从土壤向植物的传输、累积,降幅最高达30%。中药渣炭联合污泥炭施用可进一步抑制7种重金属在植物地上部分以及除As、Cr外其他重金属在根中的吸收、累积。本研究结果可为评估有机固废生物炭土地利用的环境风险提供参考。
Converting organic solid wastes (OSW) into biochar through pyrolysis has been receiving increasing attention due to the merits including ameliorating soil properties, facilitating carbon sequestration, and immobilizing heavy metals. However, the bioavailability of the immobilized heavy metals in soil remains unclear. The effects of two typical OSW- (i.e., municipal sludge- and medicinal herb residue-) derived biochars on the availability of heavy metals in the receiving soil and the uptake and transport of the heavy metals by plants were investigated using pot experiments. The results indicated that the two biochars significantly increased the chemical availability of As and Zn whereas decreased the available contents of Cr and Pb (
< 0.05) in the soil. The available contents of Cd, Cu, and Ni were also decreased to a certain extent by the biochar introduction. Meanwhile, these two biochars significantly decreased, with a maximum decreasing rate of 30%, the uptake of six heavy metals (i.e., As, Cd, Cr, Cu, Ni, and Pb) except for Zn in both the aerial and root parts of maize. The combined application of medicinal herb residue-derived biochar with municipal sludge-derived biochar further decreased the uptake of heavy metals in the plant from soil except for the increased uptake of As and Cr in the root compared to application of municipal sludge-derived biochar alone. This study provides vital basis for assessing the environmental risks of OSW-derived biochar when applied to land.
.
施用有机固废生物炭对玉米地上部和根组织生物量(单株干重)影响
Effects of organic solid wastes-derived biochars on aerial and root biomass of maize (dry weight per plant)
红外光谱分析有机固废生物炭及土壤有机官能团组成
FTIR spectra reflect organic functional group compositions in organic solid wastes-derived biochars and soil
Correlation of heavy metal uptake by maize aerial and root parts with their available contents in soils following different organic solid waste-derived biochar treatments (critical value of
有机固废生物炭对不同重金属在玉米地上部及根组织生物富集系数的影响
Effects of organic solid wastes-derived biochars on bioconcentration factors of heavy metals in maize aerial and root parts
Basic physical and chemical properties and total distribution of heavy metals of soil and organic solid waste-derived biochars
Effects of organic solid wastes-derived biochars on available heavy metals and phosphorus in soil
Heavy metal uptake by maize aerial part as affected by organic solid wastes-derived biochars
Heavy metal uptake by maize root as affected by organic solid waste-derived biochars
[1] | 戴晓虎. 我国污泥处理处置现状及发展趋势[J]. 科学, 2020, 72(6): 30-34. |
[2] | 吴继阳, 郑凯琪, 杨婷婷, 等. 污泥生物炭对土壤中Pb和Cd的生物有效性的影响[J]. 环境工程学报, 2017, 11(10): 5757-5763. doi: 10.12030/j.cjee.201612044 |
[3] | 王丽霞, 杜子文, 封莉, 等. 连续施用城市污泥后林地土壤中重金属的含量变化及生态风险[J]. 环境工程学报, 2021, 15(3): 1092-1102. doi: 10.12030/j.cjee.202001001 |
[4] | ZHENG G, WANG X K, CHEN T B, et al. Passivation of lead and cadmium and increase of the nutrient content during sewage sludge composting by phosphate amendments[J]. Environmental Research, 2020, 185: 109431. doi: 10.1016/j.envres.2020.109431 |
[5] | BARRY D, BARBIERO C, BRIENS C, et al. Pyrolysis as an economical and ecological treatment option for municipal sewage sludge[J]. Biomass and Bioenergy, 2019, 122: 472-480. doi: 10.1016/j.biombioe.2019.01.041 |
[6] | DOU X M, CHEN D Z, HU Y Y, et al. Carbonization of heavy metal impregnated sewage sludge oriented towards potential co-disposal[J]. Journal of Hazardous Materials, 2017, 321: 132-145. doi: 10.1016/j.jhazmat.2016.09.010 |
[7] | LEE J W, HAWKINS B, DAY D M, et al. Sustainability: the capacity of smokeless biomass pyrolysis for energy production, global carbon capture and sequestration[J]. Energy & Environmental Science, 2010, 3: 1695-1705. |
[8] | HUANG R X, ZHANG B, SAAD E M, et al. Speciation evolution of zinc and copper during pyrolysis and hydrothermal carbonization treatments of sewage sludges[J]. Water Research, 2018, 132: 260-269. doi: 10.1016/j.watres.2018.01.009 |
[9] | WANG Z P, XIE L K, LIU K, et al. Co-pyrolysis of sewage sludge and cotton stalks[J]. Waste Management, 2019, 89: 430-438. doi: 10.1016/j.wasman.2019.04.033 |
[10] | KHAN S, CHAO G, WAQAS M, et al. Sewage sludge biochar in?uence upon rice (Oryza sativa L) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil[J]. Environmental Science & Technology, 2013, 47: 8624-8632. |
[11] | JIN J W, LI Y N, ZHANG J Y, et al. In?uence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge[J]. Journal of Hazardous Materials, 2016, 320: 417-426. doi: 10.1016/j.jhazmat.2016.08.050 |
[12] | CHENG Y, LUO L, LV J T, et al. Copper speciation evolution in swine manure induced by pyrolysis[J]. Environmental Science & Technology, 2020, 54(14): 9008-9014. |
[13] | LI S H, ZOU D S, LI L C, et al. Evolution of heavy metals during thermal treatment of manure: A critical review and outlooks[J]. Chemosphere, 2020, 247: 125962. doi: 10.1016/j.chemosphere.2020.125962 |
[14] | CHEN Z E, LUO L, XIAO D Y, et al. Selected dark sides of biomass-derived biochars as environmental amendments[J]. Journal of Environmental Sciences, 2017, 54: 13-20. doi: 10.1016/j.jes.2016.06.004 |
[15] | 李智伟, 王兴栋, 林景江, 等. 污泥生物炭制备过程中氮磷钾及重金属的迁移行为[J]. 环境工程学报, 2016, 10(3): 1392-1399. |
[16] | LIAN F, SUN B B, SONG Z G, et al. Physicochemical properties of herb-residue biochar and its sorption to ionizable antibiotic sulfamethoxazole[J]. Chemical Engineering Journal, 2014, 248: 128-134. doi: 10.1016/j.cej.2014.03.021 |
[17] | HE E K, YANG Y X, XU Z B, et al. Two years of aging in?uences the distribution and lability of metal(loid)s in a contaminated soil amended with different biochars[J]. Science of the Total Environment, 2019, 673: 245-253. doi: 10.1016/j.scitotenv.2019.04.037 |
[18] | XU Y G, QI F J, BAI T X, et al. A further inquiry into co-pyrolysis of straws with manures for heavy metal immobilization in manure-derived biochars[J]. Journal of Hazardous Materials, 2019, 380: 120870. doi: 10.1016/j.jhazmat.2019.120870 |
[19] | 环境保护部. 土壤和沉积物金属元素总量的消解 微波消解法: HJ 832-2017[S]. 北京: 中国环境科学出版社, 2017. |
[20] | 环境保护部. 土壤8种有效态元素的测定 二乙烯三胺五乙酸浸提-电感耦合等离子体发射光谱法: HJ 804-2016[S]. 北京: 中国环境科学出版社, 2016. |
[21] | WOOLSON E A, AXLEY J H, KEARNEY P C. Correlation between available soil arsenic, estimated by six methods, and response of corn (Zea mays L.)[J]. Soil Science Society of America Journal, 1971, 35(1): 101-105. doi: 10.2136/sssaj1971.03615995003500010030x |
[22] | LUO L, MA Y B, SANDERS R L, et al. Speciation and transformation of phosphorus in three long-term fertilized Chinese soils using chemical fractionation and P K-edge XANES spectroscopy[J]. Nutrient Cycling in Agroecosystems, 2017, 107: 215-226. doi: 10.1007/s10705-017-9830-5 |
[23] | 环境保护部. 土壤阳离子交换量的测定三氯化六氨合钴浸提-分光光度法: HJ 889-2017[S]. 北京: 中国环境科学出版社, 2017. |
[24] | BOIM A G F, MELO L C A, MORENO F N, et al. Bioconcentration factors and the risk concentrations of potentially toxic elements in garden soils[J]. Journal of Environmental Management, 2016, 170: 21-27. |
[25] | 生态环境部, 国家市场监督管理总局. 土壤环境质量农用地土壤污染风险管控标准(试行): GB 15618-2018[S]. 北京: 中国环境科学出版社, 2018. |
[26] | 农业农村部. 生物炭基有机肥料: NY/T 3618-2020[S]. 北京: 中国农业出版社, 2020. |
[27] | 国家市场监督管理总局, 中国国家标准化管理委员会. 农用污泥污染物控制标准: GB 4284-2018[S]. 北京: 中国标准出版社, 2018. |
[28] | LOCK K, JANSSEN C R. Influence of aging on metal availability in soils[J]. Reviews of Environmental Contamination and Toxicology, 2003, 178: 1-21. |
[29] | XIAO Z H, YUAN X Z, LI H, et al. Chemical speciation, mobility and phytoaccessibility of heavy metals in fly ash and slag from combustion of pelletized municipal sewage sludge[J]. Science of the Total Environment, 2015, 536: 774-783. doi: 10.1016/j.scitotenv.2015.07.126 |
[30] | ANAWAR H M, RENGEL Z, DAMON P, et al. Arsenic-phosphorus interactions in the soil-plant-microbe system: Dynamics of uptake, suppression and toxicity to plants[J]. Environmental Pollution, 2018, 233: 1003-1012. doi: 10.1016/j.envpol.2017.09.098 |
[31] | TANG X Y, LIM M P, McBRIDE M B. Arsenic uptake by arugula (Eruca vesicaria, L.) cultivars as affected by phosphate availability[J]. Chemosphere, 2018, 195: 559-566. doi: 10.1016/j.chemosphere.2017.12.110 |
[32] | SHAHID M, SHAMSHAD S, RAFIQ M, et al. Chromium speciation, bioavailability, uptake, toxicity and detoxi?cation in soil-plant system: A review[J]. Chemosphere, 2017, 178: 513-533. doi: 10.1016/j.chemosphere.2017.03.074 |
[33] | 郑凯琪, 王俊超, 刘姝彤, 等. 不同热解温度污泥生物炭对Pb2+、Cd2+的吸附特性[J]. 环境工程学报, 2016, 10(12): 7277-7282. doi: 10.12030/j.cjee.201507083 |