3.大连理工大学环境学院,大连 116024
1.School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
2.Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
3.School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
铁自养反硝化技术在低碳氮比废水处理中具有安全性高、成本低廉等优势,但目前对其反硝化过程机理,特别是其中生物与化学作用的关系仍缺乏清晰认识。为此,以铁自养反硝化系统为研究对象,结合反应动力学,分析不同阶段活性污泥自养反硝化过程中生物和化学作用变化规律,以期探究该过程的脱氮机制。结果表明,铁自养反硝化过程脱氮效率和速率分别可达(87.0±1.8)%和0.12 kg·(m
-N还原均由生物作用主导。以上研究结果可为铁自养反硝化脱氮技术的发展提供参考。
Iron-dependent autotrophic denitrification technology has advantages of high safety and low cost in treating wastewater with a low C/N ratio. However, till date, the denitrification mechanism of this technology, especially the relationship between biological and chemical process remains unclear. To unravel such a relationship and explore its denitrification mechanism, this work adopted reaction kinetics to investigate the evolution of biological and chemical reactions in the acclimation of an autotrophic iron-dependent denitrifying sludge at different stages. The results showed that the denitrification efficiency and rate of the autotrophic iron-dependent denitrifying sludge could reach (87.0±1.8)% and 0.12 kg·(m
, respectively. Under the iron-dependent autotrophic condition, the Fe(Ⅱ) oxidation was dominated by chemical reaction during the denitrification of the seeding activated sludge, while the
-N reduction was dominated by biological reaction, and the biological process was co-acted by autotrophic denitrification and heterotrophic denitrification with extracellular polymer substances as substrates. For the acclimated sludge, the biological Fe(II) oxidation was enhanced, and the
-N reduction was dominated by biological reaction. This work can provide a theoretical basis for the development of iron-dependent autotrophic denitrification technology.
.
Performance of the iron-dependent autotrophic denitrification reactor
Batch tests of seeding sludge
Batch tests of acclimated sludge
Molarity change of abiotic group
Relative contribution of biological and chemical process in seeding sludge and acclimated sludge
Concentration of main substances in EPS during denitrification in seeding sludge
Kinetic constants of substrate degradation during iron-oxidizing denitrification process in activated sludge
[1] | ZHANG M, ZHENG P, LI W, et al. Performance of nitrate-dependent anaerobic ferrous oxidizing (NAFO) process: A novel prospective technology for autotrophic denitrification[J]. Bioresource Technology, 2015, 179: 543-548. doi: 10.1016/j.biortech.2014.12.036 |
[2] | LU H J, CHANDRAN K, STENSEL D. Microbial ecology of denitrification in biological wastewater treatment[J]. Water Research, 2014, 64: 237-254. doi: 10.1016/j.watres.2014.06.042 |
[3] | CHIU Y C, CHUNG M S. Determination of optimal COD/nitrate ratio for biological denitrification[J]. International Biodeterioration and Biodegradation, 2003, 51(1): 43-49. doi: 10.1016/S0964-8305(02)00074-4 |
[4] | TIAN T, ZHOU K, XUAN L, et al. Exclusive microbially driven autotrophic iron-dependent denitrification in a reactor inoculated with activated sludge[J]. Water Research, 2020, 170: 115300. doi: 10.1016/j.watres.2019.115300 |
[5] | TIAN T, YU H Q. Denitrification with non-organic electron donor for treating low C/N ratio wastewaters[J]. Bioresource Technology, 2020, 299: 122686. doi: 10.1016/j.biortech.2019.122686 |
[6] | EPSZTEIN R, BELIAVSKI M, TARRE S, et al. High-rate hydrogenotrophic denitrification in a pressurized reactor[J]. Chemical Engineering Journal, 2016, 286: 578-584. doi: 10.1016/j.cej.2015.11.004 |
[7] | SUN Y M, NEMATI S, NEMATI M. Evaluation of sulfur-based autotrophic denitrification and denitrification for biological removal of nitrate and nitrite from contaminated waters[J]. Bioresource Technology, 2012, 114: 207-216. doi: 10.1016/j.biortech.2012.03.061 |
[8] | SAHINKAYA E, YURTSEVER A, UCAR D. A novel elemental sulfur-based mixotrophic denitrifying membrane bioreactor for simultaneous Cr(VI) and nitrate reduction[J]. Journal of Hazardous Materials, 2017, 286: 15-21. |
[9] | TIAN T, ZHOU K, LI Y S, et al. Phosphorus recovery from wastewater prominently through a Fe(II)-P oxidizing pathway in the autotrophic iron-dependent denitrification process[J]. Environmental Science and Technology, 2020, 54(18): 11576-11583. doi: 10.1021/acs.est.0c02882 |
[10] | SENN D B, HEMOND H F. Nitrate controls on iron and arsenic in an urban lake[J]. Science, 2002, 296: 2373-2376. doi: 10.1126/science.1072402 |
[11] | LACK J G, CHAUDURI S K, KELLY S D, et al. Immobilization of radionuclides and heavy metals through anaerobic bio-oxidation of Fe(II)[J]. Applied and Environmental Microbiology, 2002, 68(6): 2704-2710. doi: 10.1128/AEM.68.6.2704-2710.2002 |
[12] | LI T, WANG H J, DONG W Y, et al. Performance of an anoxic reactor proposed before BAF: Effect of ferrous sulfate on enhancing denitrification during simultaneous phosphorous removal[J]. Chemical Engineering Journal, 2014, 248: 41-48. doi: 10.1016/j.cej.2014.03.033 |
[13] | STRAUB K L, BENZ M, SCHINK B, et al. Anaerobic, nitrate-dependent microbial oxidation of ferrous iron[J]. Applied and Environmental Microbiology, 1996, 62: 1458-1460. doi: 10.1128/aem.62.4.1458-1460.1996 |
[14] | NIELSEN J L, NIELSEN P H. Microbial nitrate-dependent oxidation of ferrous iron in activated sludge[J]. Environmental Science and Technology, 1998, 32: 3556-3561. doi: 10.1021/es9803299 |
[15] | WANG R, YANG C, ZHANG M, et al. Chemoautotrophic denitrification based on ferrous iron oxidation: Reactor performance and sludge characteristics[J]. Chemical Engineering Journal, 2017, 313: 693-701. doi: 10.1016/j.cej.2016.12.052 |
[16] | WEI Y Y, DAI J, MACKEY H R, et al. The feasibility study of autotrophic denitrification with iron sludge produced for sulfide control[J]. Water Research, 2017, 122: 226-233. doi: 10.1016/j.watres.2017.05.073 |
[17] | KLUEGLEIN N, ZEITVOGEL F, STIERHOF Y D, et al. Potential role of nitrite for abiotic Fe(II) oxidation and cell encrustation during nitrate reduction by denitrifying bacteria[J]. Applied and Environmental Microbiology, 2014, 80(3): 1051-1061. doi: 10.1128/AEM.03277-13 |
[18] | ETIQUE M, JORAND F P A, ZEGEYE A, et al. Abiotic process for Fe(II) oxidation and green rust mineralization driven by a heterotrophic nitrate reducing bacteria (Klebsiella mobilis)[J]. Environmental and Science Technology, 2014, 48(7): 3742-3751. doi: 10.1021/es403358v |
[19] | CHEN D D, LIU T X, LI X M, et al. Biological and chemical processes of microbially mediated nitrate-reducing Fe(II) oxidation by Pseudogulbenkiania sp. strain 2002[J]. Chemical Geology, 2018, 476: 59-69. doi: 10.1016/j.chemgeo.2017.11.004 |
[20] | LIU T X, CHEN D D, Luo X B, et al. Microbially mediated nitrate-reducing Fe(II) oxidation: Quantification of chemodenitrification and biological reactions[J]. Geochimica et Cosmochimica Acta, 2019, 256: 97-115. doi: 10.1016/j.gca.2018.06.040 |
[21] | JAMIESON J, PROMMER H, KAKSONEN A H, et al. Identifying and quantifying the intermediate processes during nitrate-dependent iron(II) oxidation[J]. Environmental and Science Technology, 2018, 52(10): 5771-5781. doi: 10.1021/acs.est.8b01122 |
[22] | NI B J, ZENG R J, FANG F, et al. Evaluation on factors influencing the heterotrophic growth on the soluble microbial products of autotrophs[J]. Biotechnology and Bioengineering, 2011, 108(4): 804-812. doi: 10.1002/bit.23012 |
[23] | XIE W M, NI B J, SEVIOYR T, et al. Characterization of autotrophic and heterotrophic soluble microbial product (SMP) fractions from activated sludge[J]. Water Research, 2012, 46(19): 6210-6217. doi: 10.1016/j.watres.2012.02.046 |
[24] | XU J, SHENG G P, Ma Y, et al. Roles of extracellular polymeric substances (EPS) in the migration and removal of sulfamethazine in activated sludge system[J]. Water Research, 2013, 47(14): 5298-5306. doi: 10.1016/j.watres.2013.06.009 |
[25] | 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. |
[26] | YANG J X, ZHANG X N, SUN Y L, et al. Formation of soluble microbial products and their contribution as electron donors for denitrification[J]. Chemical Engineering Journal, 2017, 326: 1159-1165. doi: 10.1016/j.cej.2017.06.063 |
[27] | PICARDAL F. Abiotic and microbial interactions during anaerobic transformations of Fe(II) and $ {\rm{NO}}_x^ - $[J]. Frontiers in Microbiology, 2012, 3: 112. |
[28] | BENZ M, BRUNE A, SCHINK B. Anaerobic and aerobic oxidation of ferrous iron at neutral pH by chemoheterotrophic nitrate-reducing bacteria[J]. Archives of Microbiology, 1998, 169: 159-165. doi: 10.1007/s002030050555 |
[29] | LIU T X, LI W, ZHANG M, et al. Fe(III) oxides accelerate microbial nitrate reduction and electricity generation by Klebsiella pneumoniae L17[J]. Journal of Colloid and Interface Science, 2014, 423: 25-32. doi: 10.1016/j.jcis.2014.02.026 |
[30] | BLOETHE M, RODEN E E. Composition and activity of an autotrophic Fe(II)-oxidizing, nitrate-reducing enrichment culture[J]. Applied and Environmental Microbiology, 2009, 75: 6937-6940. doi: 10.1128/AEM.01742-09 |
[31] | LAUFER K, ROY H, JORGENSEN B B, et al. Evidence for the existence of autotrophic nitrate-reducing Fe(II)-oxidizing bacteria in marine coastal sediment[J]. Applied and Environmental Microbiology, 2016, 82: 6120-6131. doi: 10.1128/AEM.01570-16 |
[32] | HE S, TOMINSKI C, KAPPLER A, et al. Metagenomic analyses of the autotrophic Fe(II)-oxidizing, nitrate-reducing enrichment culture KS[J]. Applied and Environmental Microbiology, 2016, 82: 2656-2668. doi: 10.1128/AEM.03493-15 |
[33] | KOPF S H, HENNY C, NEWMAN D K. Ligand-enhanced abiotic iron oxidation and the effects of chemical versus biological iron cycling in anoxic environments[J]. Environmental and Science Technology, 2013, 47: 2602-2611. doi: 10.1021/es3049459 |