2.西北农林科技大学资源环境学院,杨凌 712100
1.Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling 712100, China
2.College of Resources and Environmental Science, Northwest A&F University, Yangling 712100, China
针对单一添加剂施用于堆肥中作用有限,且多种添加剂混合施用效果不明的问题,向猪粪堆肥中添加麦饭石,以及其与竹炭和高温好氧菌剂的不同联用处理;通过对理化性质以及门水平上微生物群落的测定,了解各添加剂处理对堆肥过程的改善效果,并用冗余分析探究了微生物群落变化与环境因子的多元关系。结果表明,添加麦饭石及其联用剂对理化性质的优化不明显,尤其未明显加快堆肥速率;在堆肥过程中,门水平上的4种优势菌落数量均发生了变化,pH是该堆肥化过程微生物改变的主要驱动因素;堆肥过程CO
O的排放主要与厚壁菌门和拟杆菌门的菌落活动相关。该研究结果可为堆肥生产中添加剂的混合施用提供参考。
In view of the limited effect of a single additive in composting in practical applications, and the combined effects of multiple additives are unknown. Medical stone was added to pig manure compost, as well as its combination with bamboo charcoal and high-temperature aerobic bacteria. Through the determination of the physical and chemical properties and the microbial community at the phylum level, the improvement effect of each additive treatment on the composting process was recognized, and then redundant analysis was used to explore the multi-relationship between the change of the microbial community and environmental factors. The results showed that the addition of medical stone and its combination agent did not significantly optimize the physical and chemical properties, especially the composting rate was not significantly accelerated. The number of four dominant colonies at the phylum level changed during the composting process, pH was the main driving factor for microbial changes in the composting process, and the CO
O emissions during the composting process were mainly related to the activities of
. This result can provide a reference for the combined use of additives in compost production.
.
Changes in temperature during composting
Changes in pH during composting
Changes in total organic carbon during composting
Changes in t total Kjeldahl nitrogen during composting
Effects of additives on the emissions of different gases during composting
Relative abundance of species at phylum level
Redundancy analysis of species, physical and chemical properties and gas emissions
[1] | 王星, 张良, 袁海荣, 等. 猪粪在管道抽吸过程中的非牛顿流体流动阻力特性[J]. 环境工程学报, 2021, 15(1): 368-374. doi: 10.12030/j.cjee.202003145 |
[2] | LI R H, WANG J J, ZHANG Z Q, et al. Nutrient transformations during composting of pig manure with bentonite[J]. Bioresource Technology, 2012, 121: 362-368. doi: 10.1016/j.biortech.2012.06.065 |
[3] | GITIPOUR A, El BADAWY A, ARAMBEWELA M, et al. The impact of silver nanoparticles on the composting of municipal solid waste[J]. Environmental Science & Technology, 2013, 47(24): 14385-14393. |
[4] | ABD EL KADER N, ROBIN P, PAILLAT J M, et al. Turning, compacting and the addition of water as factors affecting gaseous emissions in farm manure composting[J]. Bioresource Technology, 2007, 98(14): 2619-2628. doi: 10.1016/j.biortech.2006.07.035 |
[5] | WANG M J, AWASTHI M K, WANG Q, et al. Comparison of additives amendment for mitigation of greenhouse gases and ammonia emission during sewage sludge co-composting based on correlation analysis[J]. Bioresource Technology, 2017, 243: 520-527. doi: 10.1016/j.biortech.2017.06.158 |
[6] | LUO Y M, LI G X, LUO W H, et al. Effect of phosphogypsum and dicyandiamide as additives on NH3, N2O and CH4 emissions during composting[J]. Journal of Environmental Sciences, 2013, 25(7): 1338-1345. doi: 10.1016/S1001-0742(12)60126-0 |
[7] | YANG F, LI G X, SHI H, et al. Effects of phosphogypsum and superphosphate on compost maturity and gaseous emissions during kitchen waste composting[J]. Waste Management, 2015, 36: 70-76. doi: 10.1016/j.wasman.2014.11.012 |
[8] | LIU J S, XIE Z B, LIU G, et al. A holistic evaluation of CO2 equivalent greenhouse gas emissions from compost reactors with aeration and calcium superphosphate addition[J]. Journal of Resources and Ecology, 2010, 1(2): 177-185. |
[9] | AWASTHI M K, WANG Q, HUANG H, et al. Influence of zeolite and lime as additives on greenhouse gas emissions and maturity evolution during sewage sludge composting[J]. Bioresource Technology, 2016, 216: 172-181. doi: 10.1016/j.biortech.2016.05.065 |
[10] | 席北斗, 李英军, 刘鸿亮, 等. 温度对生活垃圾堆肥效率的影响[J]. 环境污染治理技术与设备, 2005, 6(7): 33-36. |
[11] | DAVIDSON E A, JANSSENS I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J]. Nature, 2006, 440(7081): 165-173. doi: 10.1038/nature04514 |
[12] | CONANT R T, STEINWEG J M, HADDIX M L, et al. Experimental warming shows that decomposition temperature sensitivity increases with soil organic matter recalcitrance[J]. Ecology, 2008, 89(9): 2384-2391. doi: 10.1890/08-0137.1 |
[13] | YU H Y, ZENG G M, HUANG H L, et al. Microbial community succession and lignocellulose degradation during agricultural waste composting[J]. Biodegradation, 2007, 18(6): 793-802. doi: 10.1007/s10532-007-9108-8 |
[14] | 王义祥, 叶菁, 林怡, 等. 花生壳生物炭用量对猪粪堆肥温室气体和NH3排放的影响[J]. 2021, 26(6): 114-125. |
[15] | 李荣华, 张广杰, 秦睿, 等. 添加钝化剂对猪粪好氧堆肥过程中理化特性的影响[J]. 环境科学学报, 2012, 32(10): 2591-2599. |
[16] | AWASTHI M K, WANG Q, AWASTHI S K, et al. Influence of medical stone amendment on gaseous emissions, microbial biomass and abundance of ammonia oxidizing bacteria genes during biosolids composting[J]. Bioresource Technology, 2018, 247: 970-979. doi: 10.1016/j.biortech.2017.09.201 |
[17] | 毛晖, 李荣华, 黄懿梅, 等. 添加剂对猪粪好氧堆肥过程锌和铜形态的影响[J]. 农业机械学报, 2013, 44(10): 164-171. doi: 10.6041/j.issn.1000-1298.2013.10.026 |
[18] | WANG X, SELVAM A, WONG J W C. Influence of lime on struvite formation and nitrogen conservation during food waste composting[J]. Bioresource Technology, 2016, 217: 227-232. doi: 10.1016/j.biortech.2016.02.117 |
[19] | AWASTHI M K, WANG Q, CHEN H Y, et al. Beneficial effect of mixture of additives amendment on enzymatic activities, organic matter degradation and humification during biosolids co-composting[J]. Bioresource Technology, 2018, 247: 138-46. doi: 10.1016/j.biortech.2017.09.061 |
[20] | WANG Q, AWASTHI M K, REN X N, et al. Comparison of biochar, zeolite and their mixture amendment for aiding organic matter transformation and nitrogen conservation during pig manure composting[J]. Bioresource Technology, 2017, 245: 300-308. doi: 10.1016/j.biortech.2017.08.158 |
[21] | LI R H, WANG Q, ZHANG Z Q, et al. Nutrient transformation during aerobic composting of pig manure with biochar prepared at different temperatures[J]. Environmental Technology, 2015, 36(7): 815-826. doi: 10.1080/09593330.2014.963692 |
[22] | WONG J W C, FUNG S O, SELVAM A. Coal fly ash and lime addition enhances the rate and efficiency of decomposition of food waste during composting[J]. Bioresource Technology, 2009, 100(13): 3324-3331. doi: 10.1016/j.biortech.2009.01.063 |
[23] | TORKASHVAND A M. Improvement of compost quality by addition of some amendments[J]. Australian Journal of Crop Science, 2010, 4(4): 252-257. |
[24] | 罗一鸣, 李国学, 王坤, 等. 过磷酸钙添加剂对猪粪堆肥温室气体和氨气减排的作用[J]. 农业工程学报, 2012, 28(22): 235-242. doi: 10.3969/j.issn.1002-6819.2012.22.033 |
[25] | HE Y W, INAMORI Y H, MIZUOCHI M, et al. Nitrous oxide emissions from aerated composting of organic waste[J]. Environmental Science & Technology, 2001, 35(11): 2347-2351. |
[26] | 谢军飞, 李玉娥, 董红敏, 等. 堆肥处理蛋鸡粪时温室气体排放与影响因子关系[J]. 农业工程学报, 2003, 19(1): 192-195. doi: 10.3321/j.issn:1002-6819.2003.01.049 |
[27] | 向秋洁, 杨雨浛, 张成, 等. 不同用量竹炭对污泥堆肥过程温室气体排放的影响[J]. 环境科学, 2017, 38(10): 4390-4397. |
[28] | 涂志能. 炭载生物复合菌剂对猪粪好氧堆肥过程的调控[D]. 杨凌: 西北农林科技大学, 2019. |
[29] | LIU N, ZHOU J L, HAN L J, et al. Role and multi-scale characterization of bamboo biochar during poultry manure aerobic composting[J]. Bioresource Technology, 2017, 241: 190-199. doi: 10.1016/j.biortech.2017.03.144 |
[30] | MAO H, LV Z Y, SUN H D, et al. Improvement of biochar and bacterial powder addition on gaseous emission and bacterial community in pig manure compost[J]. Bioresource Technology, 2018, 258: 195-202. doi: 10.1016/j.biortech.2018.02.082 |
[31] | BLANC M, MARILLEY L, BEFFA T, et al. Thermophilic bacterial communities in hot composts as revealed by most probable number counts and molecular (16S rDNA) methods[J]. FEMS Microbiology Ecology, 1999, 28(2): 141-149. doi: 10.1111/j.1574-6941.1999.tb00569.x |
[32] | 周楫, 余亚伟, 蒋越, 等. 生物炭对污泥堆肥及其利用过程重金属有效态的影响[J]. 环境科学, 2019, 40(2): 987-993. |
[33] | 徐智, 张陇利, 张发宝, 等. 接种内外源微生物菌剂对堆肥效果的影响[J]. 中国环境科学, 2009, 29(8): 856-860. doi: 10.3321/j.issn:1000-6923.2009.08.014 |
[34] | MALINOWSKI M, WOLNY-KO?ADKA K, VAVERKOVá M D. Effect of biochar addition on the OFMSW composting process under real conditions[J]. Waste Management, 2019, 84: 364-372. doi: 10.1016/j.wasman.2018.12.011 |
[35] | WANG X Q, CUI H Y, SHI J H, et al. Relationship between bacterial diversity and environmental parameters during composting of different raw materials[J]. Bioresource Technology, 2015, 198: 395-402. doi: 10.1016/j.biortech.2015.09.041 |
[36] | 张立华. 基于纳米材料调控的农业废物堆肥化性能及相关功能微生物研究[D]. 长沙: 湖南大学, 2019. |