2.上海亚新建设工程有限公司,上海 200436
1.State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
2.Shanghai Yaxin Construction Engineering Co. Ltd., Shanghai 200436, China
在表面活性剂吐温-80(Tween-80)存在下,采用纳米零价铁(nZVI)协同Fe(Ⅱ)共同活化过碳酸钠(SPC)体系去除污染物场地水相中的三氯乙烯(TCE),验证了SPC/Fe(Ⅱ)/nZVI体系降解TCE的有效性,探究了Tween-80浓度、无机阴离子以及溶液初始pH对TCE降解效果的影响,并确定了该体系中活性氧自由基的类型。结果表明:nZVI协同Fe(Ⅱ)共同活化SPC能够高效持续降解TCE,在TCE和Tween-80初始浓度分别为0.15 mmol·L
·,自由基淬灭实验证实了降解TCE起主导作用的是·OH。综上所述,SPC/Fe(Ⅱ)/nZVI体系可以有效地去除含吐温-80的水相中的TCE,本研究成果可为污染土壤场地修复工程提供参考。
In the presence of surfactant Tween-80, the system of nanoscale zero-valent iron (nZVI) and Fe(Ⅱ) synergistically activating sodium percarbonate (SPC) was used to remove trichloroethene (TCE) in aqueous phase of contaminated sites. The effectiveness of TCE degradation by SPC/Fe(Ⅱ)/nZVI system was demonstrated. The effects of Tween-80 concentration, inorganic anions concentration and initial solution pH on TCE degradation were explored. The generation of the reactive oxygen species (ROSs) was confirmed. The experimental results showed that TCE could be degraded continuously and effectively by the nZVI and Fe(Ⅱ) synergistically activated SPC system. In the aqueous solution with 0.15 mmol·L
Tween-80, 97.3% TCE could be degraded within 60 min by SPC/Fe(Ⅱ)/nZVI system at the dosages of 0.6 mmol·L
nZVI. The presence of Tween-80 could inhibit TCE degradation, and the inhibitive effect increased with the increase of Tween-80 concentration. The presence of Cl
in solution had significant inhibitive effect. TCE removal performed well at the initial solution pH range of 2.0~5.2 in SPC/Fe(Ⅱ)/nZVI system. The chemical probe tests confirmed that ·OH and
· were generated in the system, and radical scavenging tests suggested that the major ROSs responsible for TCE degradation was ·OH. The above results strongly confirmed that TCE could be efficiently removed from water phase containing Tween-80 by SPC/Fe(Ⅱ)/nZVI system, and it provides a theoretical basis for practical application in TCE contaminated site remediation.
.
TEM images of nZVI and its partial enlarged image
不同反应体系中TCE(含Tween-80)的降解效果
TCE degradation performance in different systems (containing Tween-80)
Effect of Tween-80 concentration on TCE degradation
不同Tween-80浓度下探针化合物在SPC/Fe(II)/nZVI体系中的降解效果
Probe compounds degradation performance in different concentrations of Tween-80 under SPC/Fe(II)/nZVI system
自由基淬灭剂对TCE(含Tween-80)降解效果的影响
Effect of free radical scavengers on TCE degradation (containing Tween-80)
溶液初始pH对TCE(含Tween-80)降解的影响
Effect of initial solution pH on TCE degradation (containing Tween-80)
无机阴离子对TCE(含Tween-80)降解的影响
Effect of inorganic anions on TCE degradation (containing Tween-80)
[1] | 张凤君, 王斯佳, 马慧, 等. 三氯乙烯和四氯乙烯在土壤和地下水中的污染及修复技术[J]. 科技导报, 2012, 30(18): 65-72. doi: 10.3981/j.issn.1000-7857.2012.18.010 |
[2] | CLEWELL H J, GENTRY P R, GEARHART J M, et al. Considering pharmacokinetic and mechanistic information in cancer risk assessments for environmental contaminants: Examples with vinyl chloride and trichloroethylene[J]. Chemosphere, 1995, 31(1): 2561. doi: 10.1016/0045-6535(95)00124-Q |
[3] | 李爽, 胡晓钧, 李玉双, 等. 表面活性剂对多环芳烃的淋洗修复[J]. 环境工程学报, 2017, 11(3): 1899-1905. doi: 10.12030/j.cjee.201512026 |
[4] | SINGH S K, JOHN S. Surfactant-enhanced remediation of soils contaminated with petroleum hydrocarbons[J]. International Journal of Environment and Waste Management, 2013, 11(2): 178. doi: 10.1504/IJEWM.2013.051843 |
[5] | 李果, 毛华军, 巩宗强, 等. 几种表面活性剂对柴油及多环芳烃的增溶作用[J]. 环境科学研究, 2011, 24(7): 775-780. |
[6] | 马浩, 刘元元, 肖文燕, 等. 表面活性剂CMC对石油烃污染土壤的增溶[J]. 环境工程学报, 2016, 10(12): 7333-7338. doi: 10.12030/j.cjee.201507133 |
[7] | 王欢, 王瑶, 肖鹏飞, 等. 非-阴离子表面活性剂对PAHs的增溶作用及无机盐的强化效果研究[J]. 环境科学与管理, 2014, 39(10): 96-100. doi: 10.3969/j.issn.1673-1212.2014.10.021 |
[8] | BAI X X, WANG Y, ZHENG X, et al. Remediation of phenanthrene contaminated soil by coupling soil washing with Tween 80, oxidation using the $ {\rm{UV}}/{{\rm{S}}_2}{\rm{O}}_8^{2 - }$ process and recycling of the surfactant[J]. Chemical Engineering Journal, 2019, 369: 1014-1023. doi: 10.1016/j.cej.2019.03.116 |
[9] | MA X H, ZHAO L, LIN Z R, et al. Soil washing in combination with homogeneous Fenton-like oxidation for the removal of 2,4,4′-trichlorodiphenyl from soil contaminated with capacitor oil[J]. Environmental Science and Pollution Research, 2016, 23(8): 7890-7898. doi: 10.1007/s11356-016-6037-2 |
[10] | HUGUENOT D, MOUSSET E, VAN HULLEBUSCH E D, et al. Combination of surfactant enhanced soil washing and electro-Fenton process for the treatment of soils contaminated by petroleum hydrocarbons[J]. Journal of Environmental Management, 2015, 153: 40-47. |
[11] | MOUSSET E, OTURAN N, VAN HULLEBUSCH E D, et al. Influence of solubilizing agents (cyclodextrin or surfactant) on phenanthrene degradation by electro-Fenton process: Study of soil washing recycling possibilities and environmental impact[J]. Water Research, 2014, 48: 306-316. doi: 10.1016/j.watres.2013.09.044 |
[12] | SUNDER M, HEMPEL D C. Oxidation of tri- and perchloroethene in aqueous solution with ozone and hydrogen peroxide in a tube reactor[J]. Water Research, 1997, 31(1): 33-40. doi: 10.1016/S0043-1354(96)00218-7 |
[13] | CHE H, BAE S, LEE W. Degradation of trichloroethylene by Fenton reaction in pyrite suspension[J]. Journal of Hazardous Materials, 2011, 185(2/3): 1355-1361. |
[14] | 黄伟英, 刘菲, 鲁安怀, 等. 过氧化氢与过硫酸钠去除有机污染物的进展[J]. 环境科学与技术, 2013, 36(9): 88-95. doi: 10.3969/j.issn.1003-6504.2013.09.018 |
[15] | 李永涛, 岳东, 熊鑫高原, 等. 零价铁活化过硫酸钠降解含油废水[J]. 环境工程学报, 2016, 10(8): 4239-4243. doi: 10.12030/j.cjee.201503147 |
[16] | 王继鹏, 胡林潮, 杨彦, 等. Fe2+活化过硫酸钠降解1,2-二氯苯[J]. 环境工程学报, 2014, 8(9): 3767-3772. |
[17] | MIAO Z W, GU X G, LU S G, et al. Perchloroethylene (PCE) oxidation by percarbonate in Fe2+-catalyzed aqueous solution: PCE performance and its removal mechanism[J]. Chemosphere, 2015, 119: 1120-1125. doi: 10.1016/j.chemosphere.2014.09.065 |
[18] | 崔航, 傅晓日, 顾小钢, 等. 二价铁催化过碳酸钠处理水中乙苯[J]. 中国环境科学, 2016, 36(5): 1449-1455. doi: 10.3969/j.issn.1000-6923.2016.05.024 |
[19] | LA CALLE R G, GIMENO O, RIVAS J, et al. Percarbonate as a hydrogen peroxide carrier in soil remediation processes[J]. Environmental Engineering Science, 2012, 29(10): 951-956. doi: 10.1089/ees.2011.0237 |
[20] | ZHANG Y H, XUE C M, GUO C H. Application sodium percarbonate to oxidative degradation trichloroethylene contamination in groundwater[J]. Procedia Environmental Sciences, 2011, 10: 1668-1673. doi: 10.1016/j.proenv.2011.09.262 |
[21] | SINDELAR H R, BROWN M T, BOYER T H. Evaluating UV/H2O2, UV/percarbonate, and UV/perborate for natural organic matter reduction from alternative water sources[J]. Chemosphere, 2014, 105: 112-118. doi: 10.1016/j.chemosphere.2013.12.040 |
[22] | FU X R, GU X G, LU S G, et al. Benzene depletion by Fe(II)-catalyzed sodium percarbonate in aqueous solution[J]. Chemical Engineering Journal, 2015, 267: 25-33. doi: 10.1016/j.cej.2014.12.104 |
[23] | TANG P, JIANG W C, LU S G, et al. Enhanced degradation of carbon tetrachloride by sodium percarbonate activated with ferrous ion in the presence of ethyl alcohol[J]. Environmental Technology, 2019, 40(3): 356-364. doi: 10.1080/09593330.2017.1393012 |
[24] | YAP C L, GAN S Y, NG H K. Fenton based remediation of polycyclic aromatic hydrocarbons-contaminated soils[J]. Chemosphere, 2011, 83(11): 1414-1430. doi: 10.1016/j.chemosphere.2011.01.026 |
[25] | 朱雪强, 韩宝平. 零价铁修复受三氯乙烯污染地下水的实验研究[J]. 环境工程学报, 2012, 6(1): 94-98. |
[26] | LEFEVRE E, BOSSA N, WIESNER M R, et al. A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): Behavior, transport and impacts on microbial communities[J]. Science of the Total Environment, 2015, 565: 889-901. |
[27] | 许卉, 杨昕, 杨倩文, 等. 一种快速高效测定吐温80含量的比色方法及其应用: CN107300555A[P]. 2020-01-07. |
[28] | YAN W, HERZING A A, KIELY C J, et al. Nanoscale zero-valent iron (nZVI): Aspects of the core-shell structure and reactions with inorganic species in water[J]. Journal of Contaminant Hydrology, 2010, 118(3): 96-104. |
[29] | HAN Y, YAN W L. Reductive dechlorination of trichloroethene by zero-valent iron nanoparticles: Reactivity enhancement through sulfidation treatment[J]. Environmental Science and Technology, 2016, 50(23): 12992-13001. doi: 10.1021/acs.est.6b03997 |
[30] | ZANG X K, GU X G, LU S G, et al. Trichloroethylene oxidation performance in sodium percarbonate (SPC)/Fe2+ system[J]. Environmental Technology, 2014, 35(5): 791-798. |
[31] | 臧学轲, 吕树光, 顾小钢, 等. 泥浆系统中Fe2+活化过碳酸钠降解三氯乙烯[J]. 环境工程学报, 2015, 9(8): 4042-4046. doi: 10.12030/j.cjee.20150873 |
[32] | 臧学轲. 羟胺促进柠檬酸-Fe2+活化过碳酸钠降解三氯乙烯[J]. 华东理工大学学报(自然科学版), 2018, 44(3): 454-462. |
[33] | 贾汉忠, 宋存义, 李晖. 纳米零价铁处理地下水污染技术研究进展[J]. 化工进展, 2009, 28(11): 2028-2034. |
[34] | CHENG M, ZENG G, HUANG D, et al. Advantages and challenges of Tween 80 surfactant-enhanced technologies for the remediation of soils contaminated with hydrophobic organic compounds[J]. Chemical Engineering Journal, 2017, 314: 98-113. doi: 10.1016/j.cej.2016.12.135 |
[35] | ANIPSITAKIS G P, DIONYSIOU D D. Radical generation by the interaction of transition metals with common oxidants[J]. Environmental Science Technology, 2004, 38(13): 3705-3712. doi: 10.1021/es035121o |
[36] | SMITH B A, TEEL A L, WATTS R J. Identification of the reactive oxygen species responsible for carbon tetrachloride degradation in modified Fenton’s systems[J]. Environmental Science Technology, 2004, 38(20): 5465-5469. doi: 10.1021/es0352754 |
[37] | BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O?) in aqueous solution[J]. Journal Physical and Chemical Reference Data, 1988, 17(2): 513-886. doi: 10.1063/1.555805 |
[38] | TEEL A L, WATTS R J. Degradation of carbon tetrachloride by modified Fenton's reagent[J]. Journal of Hazardous Materials, 2002, 94(2): 179-189. doi: 10.1016/S0304-3894(02)00068-7 |
[39] | ZHANG X, GU X G, LU S G, et al. Degradation of trichloroethylene in aqueous solution by calcium peroxide activated with ferrous ion[J]. Journal of Hazardous Materials, 2015, 284: 253-260. doi: 10.1016/j.jhazmat.2014.11.030 |
[40] | PIGNATELLO J J, OLIVEROS E, MACKAY A. Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry[J]. Critical Reviews in Environmental Science and Technology, 2006, 36(1): 1-84. doi: 10.1080/10643380500326564 |
[41] | KHAN J A, HE X X, KHAN H M, et al. Oxidative degradation of atrazine in aqueous solution by UV/H2O2/Fe2+, $ {\rm{UV}}/{{\rm{S}}_2}{\rm{O}}_8^{2 - }$/Fe2+ and $ {\rm{UV}}/{\rm{HSO}}_5^{- }$/Fe2+ processes: A comparative study[J]. Chemical Engineering Journal, 2013, 218: 376-383. doi: 10.1016/j.cej.2012.12.055 |
[42] | LIPCZYNSKA E, SPRAH G, HARMS S. Influence of some groundwater and surface waters constituents on the degradation of 4-chlorophenol by the Fenton reaction[J]. Chemosphere, 1995, 30(1): 9-20. doi: 10.1016/0045-6535(94)00371-Z |
[43] | SIEDLECKA E M, WIECKOWSKA A, STEPNOWSKI P. Influence of inorganic ions on MTBE degradation by Fenton’s reagent[J]. Journal of Hazardous Materials, 2007, 147(1/2): 497-502. |
[44] | GREBEL J E, PIGNATELLO J J, MITCH W A. Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters[J]. Environmental Science and Technology, 2010, 44(17): 6822. doi: 10.1021/es1010225 |
[45] | BUXTON G V, ELLIOT A J. Rate constant for reaction of hydroxyl radicals with bicarbonate ions[J]. International Journal of Radiation Applications & Instrumentation. Part C. Radiation Physics & Chemistry, 1986, 27(3): 241-243. |