3.山东大学环境科学与工程学院,青岛 266237
1.Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
3.School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
为了探究氧气对纳米零价铁(nZVI)除砷的影响,考察了不同的氧含量(厌氧、低氧、中氧和高氧)条件下nZVI对As(Ⅲ)/As(V)的去除效果,并结合表征结果分析了氧气对nZVI除砷的影响机制。结果表明:氧气存在会显著促进nZVI对As(Ⅲ)/As(Ⅴ)的去除,但不同氧含量对nZVI除砷的促进程度有所不同;随着氧含量的增加,As(Ⅲ)/As(Ⅴ)的去除率呈现先增大后减小然后再增大的趋势。在初始砷浓度为50 mg·L
/nZVI摩尔比等于0.5时,砷的去除率达到最大,As(Ⅲ)和As(Ⅴ)体系中砷的去除率分别为96.27%和51.75%。固相表征结果表明:氧气对nZVI的氧化程度及除砷效果具有较大的影响,在低氧条件下,nZVI被少量氧化为无定型铁矿物进而提高除砷效果;在中氧条件下,nZVI被氧化为大量的溶解态Fe(Ⅱ)/Fe(Ⅲ),溶解态铁对砷没有去除效果,从而导致砷的去除率降低;在高氧条件下,nZVI被大量氧化,溶解态Fe(Ⅱ)/Fe(Ⅲ)进一步被氧化形成新的无定型铁矿物,可增强除砷效果。以上结果可为评估不同氧含量条件下纳米零价铁除砷效果以及人为强化纳米零价铁除砷效果提供参考。
In this study, the effect of oxygen on arsenic removal by nano zero-valent iron (nZVI) was investigated under different oxygen conditions (anaerobic, low, medium and high oxygen), and the mechanism of oxygen promoted nZVI for arsenic removal was analyzed based on the characterization results. The result showed that the presence of oxygen significantly promoted the removal of As(Ⅲ)/As(Ⅴ) by nZVI. However, there were significant differences in the removal efficiency of As(Ⅲ)/As(Ⅴ) at different oxygen contents. With the increase of oxygen content, the removal efficiency of As(Ⅲ)/As(Ⅴ) increased first, then decreased, but rose again. At the initial As content of 50 mg·L
, the maximum removal efficiencies of As(Ⅲ) and As(Ⅴ) were 96.27% and 51.75%, respectively. The solid phase characterization results indicated that oxygen can significantly affect the oxidation extent of nZVI and the performance of arsenic removal by nZVI. Under low oxygen condition, nZVI was slightly oxidized to amorphous iron oxides and the arsenic removal effect was improved. Under medium oxygen condition, nZVI was oxidized to a large amount of dissolved Fe(Ⅱ)/Fe(Ⅲ), which was unavailable for arsenic removal, then arsenic removal efficiency declined. Under high oxygen condition, abundant of nZVI was oxidized and the dissolved Fe(Ⅱ)/Fe(Ⅲ) were further oxidized to form new amorphous iron minerals, then arsenic removal efficiency increased. This study provided a theoretical proof for evaluating the effect of arsenic removal by nZVI combined with different oxygen content conditions and the effect of artificial enhancement of arsenic removal by nZVI.
.
不同氧含量条件下As(III)/As(V)浓度随时间的变化
Changes of As(III)/As(V) concentration with time under different oxygen content conditions
Effect of different oxygen content conditions on arsenic removal efficiency
Effect of different oxygen content conditions on the release of dissolved iron
Effect of different oxygen content conditions on pH
新制备nZVI及不同氧含量条件下反应产物的SEM图
SEM images of original nZVI and reaction products under different oxygen content conditions
XRD patterns of reaction products
Proportion of arsenic and iron with different valence states in reaction products of nZVI-H
[1] | GRUND S C, HANUSCH K, WOLF H U. Ullmann’s Encyclopedia of Industrial Chemistry[M]. Germany: Wiley-VCH, 2008. |
[2] | ZHU Y G, YOSHINAGA M, ZHAO F J, et al. Earth abides arsenic biotransformations[J]. Annual Review of Earth and Planetary Sciences, 2014, 42: 443-467. doi: 10.1146/annurev-earth-060313-054942 |
[3] | SMEDLEY P L, KINNIBURGH D G. Essentials of Medical Geology: Revised Edition[M]. Dordrecht: Springer Netherlands, 2013. |
[4] | GUPTA D K, TIWARI S, RAZAFINDRABE B, et al. Arsenic Contamination in the Environment[M]. Germany: Springer International Publishing, 2017. |
[5] | HARISHA R, HOSAMANI K, KERI R, et al. Arsenic removal from drinking water using thin film composite nanofiltration membrane[J]. Desalination, 2010, 252(1): 75-80. |
[6] | WANG C, HSIAO C K, CHEN C, et al. A review of the epidemiologic literature on the role of environmental arsenic exposure and cardiovascular diseases[J]. Toxicology and Applied Pharmacology, 2007, 222(3): 315-326. doi: 10.1016/j.taap.2006.12.022 |
[7] | 韩彩芸, 张六一, 邹照华, 等. 吸附法处理含砷废水的研究进展[J]. 环境化学, 2011, 30(2): 517-523. |
[8] | ZHANG G S, QU J H, LIU H J, et al. Removal mechanism of As(III) by a novel Fe-Mn binary oxide adsorbent: Oxidation and sorption[J]. Environmental Science & Technology, 2007, 41(13): 4613-4619. |
[9] | 王棣, 魏文侠, 王琳玲, 等. 纳米铁原位注入技术对六价铬污染地下水的修复[J]. 环境工程学报, 2018, 12(2): 521-526. doi: 10.12030/j.cjee.201706140 |
[10] | 谢青青, 姚楠. 纳米零价铁的制备及应用研究进展[J]. 化工进展, 2017, 36(6): 2208-2214. |
[11] | KANEL S R, GRENECHE J M, CHOI H. Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material[J]. Environmental Science & Technology, 2006, 40(6): 2045-2050. |
[12] | TUCEK J, PRUCEK R, KOLARIK J, et al. Zero-valent iron nanoparticles reduce arsenites and arsenates to As(0) firmly embedded in core-shell superstructure: Challenging strategy of arsenic treatment under anoxic conditions[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(4): 3027-3038. |
[13] | BHOWMICK S, CHAKRABORTY S, MONDAL P, et al. Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution: Kinetics and mechanism[J]. Chemical Engineering Journal, 2014, 243: 14-23. doi: 10.1016/j.cej.2013.12.049 |
[14] | 刘静, 刘爱荣, 张伟贤. 纳米零价铁及其在环境介质中氧化后性质演变研究进展[J]. 环境化学, 2014, 33(4): 576-583. doi: 10.7524/j.issn.0254-6108.2014.04.009 |
[15] | SMITH R L, HARVEY R W, LEBLANC D R. Importance of closely spaced vertical sampling in delineating chemical and microbiological gradients in groundwater studies[J]. Journal of Contaminant Hydrology, 1991, 7(3): 285-300. doi: 10.1016/0169-7722(91)90032-V |
[16] | DATRY T, MALARD F, GIBERT J. Dynamics of solutes and dissolved oxygen in shallow urban groundwater below a stormwater infiltration basin[J]. Science of the Total Environment, 2004, 329(1/2/3): 215-229. |
[17] | CHEN W F, LIU T K. Dissolved oxygen and nitrate of groundwater in Choshui Fan-Delta, western Taiwan[J]. Environmental Geology, 2003, 44(6): 731-737. doi: 10.1007/s00254-003-0823-0 |
[18] | CHAKRABORTY S, NATH B, CHATTERJEE D, et al. Retardation of arsenic transport by oxidized Holocene aquifer sediments of West Bengal, India[J]. Journal of Hydrology, 2014, 518: 460-463. doi: 10.1016/j.jhydrol.2013.07.028 |
[19] | SUN Y P, LI X Q, CAO J, et al. Characterization of zero-valent iron nanoparticles[J]. Advances in Colloid and Interface Science, 2006, 120(1/2/3): 47-56. |
[20] | PONDER S M, DARAB J G, MALLOUK T E. Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron[J]. Environmental Science & Technology, 2000, 34(12): 2564-2569. |
[21] | MU Y, JIA F, AI Z, et al. Iron oxide shell mediated environmental remediation properties of nano zero-valent iron[J]. Environmental Science Nano, 2017, 4(1): 27-45. doi: 10.1039/C6EN00398B |
[22] | ZOU Y, WANG X, KHAN A, et al. Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: A review[J]. Environmental Science & Technology, 2016, 50(14): 7290-7304. |
[23] | 冷迎祥, 刘菲, 王文娟, 等. 小分子有机酸对纳米铁稳定砷的影响[J]. 环境工程学报, 2017, 11(5): 3195-3203. doi: 10.12030/j.cjee.201606010 |
[24] | JEKEL M, AMY G. Arsenic removal during drinking water treatment[J]. Interface Science and Technology, 2006, 10: 193-206. doi: 10.1016/S1573-4285(06)80080-3 |
[25] | WU C, TU J, LIU W, et al. The double influence mechanism of pH on arsenic removal by nano zero valent iron: Electrostatic interactions and the corrosion of Fe0[J]. Environmental Science: Nano, 2017, 4(7): 1544-1552. doi: 10.1039/C7EN00240H |
[26] | WANG C M, BAER D R, THOMAS L E, et al. Void formation during early stages of passivation: Initial oxidation of iron nanoparticles at room temperature[J]. Journal of Applied Physics, 2005, 98(9): 094308. doi: 10.1063/1.2130890 |
[27] | LIU A, LIU J, HAN J, et al. Evolution of nanoscale zero-valent iron (nZVI) in water: Microscopic and spectroscopic evidence on the formation of nano- and micro-structured iron oxides[J]. Journal of Hazardous Materials, 2017, 322: 129-135. doi: 10.1016/j.jhazmat.2015.12.070 |
[28] | LIU A, LIU J, PAN B, et al. Formation of lepidocrocite (γ-FeOOH) from oxidation of nanoscale zero-valent iron (nZVI) in oxygenated water[J]. RSC Advances, 2014, 4(101): 57377-57382. doi: 10.1039/C4RA08988J |
[29] | SONG J, JIA S Y, YU B, et al. Formation of iron (hydr)oxides during the abiotic oxidation of Fe(II) in the presence of arsenate[J]. Journal of Hazardous Materials, 2015, 294: 70-79. doi: 10.1016/j.jhazmat.2015.03.048 |
[30] | THORAL S, ROSE J, GARNIER J M, et al. XAS study of iron and arsenic speciation during Fe(II) oxidation in the presence of As(III)[J]. Environmental Science & Technology, 2005, 39(24): 9478-9485. |
[31] | HOHMANN C, MORIN G, ONANGUEMA G, et al. Molecular-level modes of As binding to Fe(III)(oxyhydr) oxides precipitated by the anaerobic nitrate-reducing Fe(II)-oxidizing Acidovorax sp. strain BoFeN1[J]. Geochimica et Cosmochimica Acta, 2011, 75(17): 4699-4712. doi: 10.1016/j.gca.2011.02.044 |
[32] | SASAKI K, NAKANO H, WILOPO W, et al. Sorption and speciation of arsenic by zero-valent iron[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 347(1/2/3): 8-17. |
[33] | MELITAS N, WANG J, CONKLIN M, et al. Understanding soluble arsenate removal kinetics by zerovalent iron media[J]. Environmental Science & Technology, 2002, 36(9): 2074-2081. |
[34] | SHERMAN D M, RANDALL S R. Surface complexation of arsenic(V) to iron(III)(hydr) oxides: Structural mechanism from ab initio molecular geometries and EXAFS spectroscopy[J]. Geochimica et Cosmochimica Acta, 2003, 67(22): 4223-4230. doi: 10.1016/S0016-7037(03)00237-0 |
[35] | ONANGURMA G, MORIN G, JUILLOT F, et al. EXAFS analysis of arsenite adsorption onto two-line ferrihydrite, hematite, goethite, and lepidocrocite[J]. Environmental Science & Technology, 2005, 39(23): 9147-9155. |
[36] | LIEN H L, WILKIN R T. High-level arsenite removal from groundwater by zero-valent iron[J]. Chemosphere, 2005, 59(3): 377-386. doi: 10.1016/j.chemosphere.2004.10.055 |
[37] | 杨忠兰, 曾希柏, 孙本华, 等. 水铁矿结构稳定性及对砷固定研究与展望[J]. 农业环境科学学报, 2020, 39(3): 445-453. doi: 10.11654/jaes.2019-1167 |
[38] | DIXIT S, HERING J G. Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: Implications for arsenic mobility[J]. Environmental Science & Technology, 2003, 37(18): 4182-4189. |