3.中国科学院大连化学物理研究所,大连 116023
1.Beijing Key Laboratory of Fuel Cleanliness and Efficient Catalytic Reduction Technology, College of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102600, China
2.Shanxi Jinhuan Keyuan Environmental Resources Technology Co. Ltd., Taiyuan 030024, China
3.Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
采用共沉淀法制备了一系列Ca-Zr复合材料,探究了不同的焙烧温度对材料结构和化学性质的影响。使用X射线衍射、扫描电子显微镜及高分辨透射电镜等分析手段表征了所制备样品的物相变化和颗粒形貌特征,以间甲酚为底物,采用臭氧催化氧化方法对所得催化剂的催化性能进行了分析。结果表明:当焙烧温度升高到1 000 ℃以上时,样品晶型以斜方晶系CaZrO
为主,随着焙烧温度的升高,颗粒更加均匀分散。在催化臭氧氧化降解间甲酚实验中,当焙烧温度为800 ℃时, TOC去除率最高可达到79%。800 ℃焙烧所得的样品由纳米颗粒组成,晶格间距为0.29 nm,说明样品的高暴露晶面为CaZrO
的(121)晶面;XPS结果证实了样品的高活性可能是由晶格氧和表面羟基基团起重要作用而导致的。这种高效的纳米钙锆复合材料为催化臭氧氧化处理废水奠定了良好的基础。
A series of Ca-Zr composites were prepared by co-precipitation method. The effects of calcination temperatures on the structure and chemical properties of the materials were explored. X-ray diffraction, scanning electron microscopy and high resolution transmission electron microscopy were used to characterize the phase changes and particle morphology of the prepared samples. The performance of this catalyst was analyzed with catalytic ozonation of
-cresol. The results showed that when the calcination temperature was above 1 000 ℃, the crystal form of the catalyst sample was mainly orthorhombic CaZrO
, and the particles were more uniformly dispersed with the increase of calcination temperature. In the experiments of
-cresol degradation by catalytic ozone oxidation, at the calcination temperature of 800 ℃, TOC removal rate could reach up to 79%. The sample calcined at 800 ℃ was composed of nanoparticles with a lattice spacing of 0.29 nm, indicating that the highly exposed crystal plane of the sample was the (121) plane of CaZrO
.The XPS results confirmed that the lattice oxygen and surface hydroxyl groups may play important role in the high activity of the sample. This high-efficiency nano Ca-Zr composite material lays a good foundation for catalytic ozone oxidation treatment of wastewater.
.
XRD patterns of samples at different calcination temperatures
SEM images of samples at different calcination temperatures
Thermogravimetric analysis of calcium zirconate catalyst
pretreatment of samples at different calcination temperatures
不同焙烧温度对间甲酚废水TOC去除率和转化率的影响
Effects of different calcination temperatures on TOC removal and conversion rate of
800 ℃焙烧样品高分辨透射电镜(TEM)图
High resolution transmission electron microscope (TEM) image of sample calcined at 800 ℃
800 ℃焙烧样品X射线光电子能谱分析(XPS)图谱
X-ray photoelectron spectroscopy (XPS) spectra of sample calcined at 800 ℃
[1] | GAO P, TIAN X, NIE Y, et al. Promoted peroxymonosulfate activation into singlet oxygen over perovskite for ofloxacin degradation by controlling the oxygen defect concentration[J]. Chemical Engineering Journal, 2019, 359: 828-839. doi: 10.1016/j.cej.2018.11.184 |
[2] | CHEN D, LIU F, ZONG L, et al. Integrated adsorptive technique for efficient recovery of m-cresol and m-toluidine from actual acidic and salty wastewater[J]. Journal of Hazardous Materials, 2016, 312: 192-199. doi: 10.1016/j.jhazmat.2016.03.056 |
[3] | JIANG Y, CAI X, WU D, et al. Biodegradation of phenol and m-cresol by mutated Candida tropicalis[J]. Journal of Environmental Sciences, 2010, 22(4): 621-626. doi: 10.1016/S1001-0742(09)60154-6 |
[4] | LIU P, HE S, WEI H, et al. Characterization of α-Fe2O3/γ-Al2O3 catalysts for catalytic wet peroxide oxidation of m-cresol[J]. Industrial & Engineering Chemistry Research, 2015, 54(1): 130-136. |
[5] | WANG Y, WEI H, ZHAO Y, et al. The optimization, kinetics and mechanism of m-cresol degradation via catalytic wet peroxide oxidation with sludge-derived carbon catalyst[J]. Journal of Hazardous Materials, 2017, 326: 36-46. doi: 10.1016/j.jhazmat.2016.12.014 |
[6] | YANG Y, ZHANG H, YAN Y. The preparation of Fe2O3-ZSM-5 catalysts by metal-organic chemical vapour deposition method for catalytic wet peroxide oxidation of m-cresol[J]. Royal Society Open Science, 2018, 5(3): 1-15. |
[7] | 于晨阳, 毛缜. 蜡状芽孢杆菌菌株SMC的间甲酚降解特性及动力学[J]. 化工进展, 2015, 34(5): 1453-1458. |
[8] | KENNEDY L J, VIJAYA J J, SEKARAN G, et al. Equilibrium, kinetic and thermodynamic studies on the adsorption of m-cresol onto micro- and mesoporous carbon[J]. Journal of Hazardous Materials, 2007, 149(1): 134-143. doi: 10.1016/j.jhazmat.2007.03.061 |
[9] | LV A, HU C, NIE Y, et al. Catalytic ozonation of toxic pollutants over magnetic cobalt-doped Fe3O4 suspensions[J]. Applied Catalysis B: Environmental, 2012, 117-118: 246-252. doi: 10.1016/j.apcatb.2012.01.020 |
[10] | 刘伟军, 段平洲, 胡翔, 等. 活性炭纤维三维电极电催化降解水中间甲酚: 效能及影响因素研究[J]. 中国环境科学, 2019, 39(1): 164-169. doi: 10.3969/j.issn.1000-6923.2019.01.018 |
[11] | YANG Y, ZHANG H, YAN Y. Preparation of novel iron-loaded microfibers entrapped carbon-nanotube composites for catalytic wet peroxide oxidation of m-cresol in a fixed bed reactor[J]. Separation and Purification Technology, 2019, 212: 405-415. doi: 10.1016/j.seppur.2018.11.050 |
[12] | ZHUANG H F, HAN H J, HOU B L, et al. Heterogeneous catalytic ozonation of biologically pretreated Lurgi coal gasification wastewater using sewage sludge based activated carbon supported manganese and ferric oxides as catalysts[J]. Bioresource Technology, 2014, 166: 178-186. doi: 10.1016/j.biortech.2014.05.056 |
[13] | ZHANG F, HAN H, HOU B, et al. Ozonation of aqueous phenol catalyzed by biochar produced from sludge obtained in the treatment of coking wastewater[J]. Journal of Environmental Management, 2018, 224: 376-386. doi: 10.1016/j.jenvman.2018.07.038 |
[14] | NAWROCKI J, KASPRZYK-HORDERN B. The efficiency and mechanisms of catalytic ozonation[J]. Applied Catalysis B: Environmental, 2010, 99(1/2): 27-42. |
[15] | AFZAL S, QUAN X, ZHANG J. High surface area mesoporous nanocast LaMO3 (M=Mn, Fe) perovskites for efficient catalytic ozonation and an insight into probable catalytic mechanism[J]. Applied Catalysis B: Environmental, 2017, 206: 692-703. doi: 10.1016/j.apcatb.2017.01.072 |
[16] | GRABOWSKA E. Selected perovskite oxides: Characterization, preparation and photocatalytic properties: A review[J]. Applied Catalysis B: Environmental, 2016, 186: 97-126. doi: 10.1016/j.apcatb.2015.12.035 |
[17] | CARBAJO M, BELTRáN F J, GIMENO O, et al. Ozonation of phenolic wastewaters in the presence of a perovskite type catalyst[J]. Applied Catalysis B: Environmental, 2007, 74(3/4): 203-210. |
[18] | ORGE C A, óRF?O J J M, PEREIRA M, et al. Lanthanum-based perovskites as catalysts for the ozonation of selected organic compounds[J]. Applied Catalysis B: Environmental, 2013, 140-141: 426-432. doi: 10.1016/j.apcatb.2013.04.045 |
[19] | GONG S, XIE Z, LI W, et al. Highly active and humidity resistive perovskite LaFeO3 based catalysts for efficient ozone decomposition[J]. Applied Catalysis B: Environmental, 2019, 241: 578-587. doi: 10.1016/j.apcatb.2018.09.041 |
[20] | ZHANG Y, XIA Y, LI Q, et al. Synchronously degradation benzotriazole and elimination bromate by perovskite oxides catalytic ozonation: Performance and reaction mechanism[J]. Separation and Purification Technology, 2018, 197: 261-270. doi: 10.1016/j.seppur.2018.01.019 |
[21] | RIVAS F J, CARBAJO M, BELTRáN F J, et al. Perovskite catalytic ozonation of pyruvic acid in water: Operating conditions influence and kinetics[J]. Applied Catalysis B: Environmental, 2006, 62(1): 93-103. |
[22] | EVANGELINE B, AZEEM P A, PRASADA RAO R, et al. Structural and luminescent features of cerium doped CaZrO3 blue nanophosphors[J]. Journal of Alloys and Compounds, 2017, 705: 618-623. doi: 10.1016/j.jallcom.2016.11.115 |
[23] | JI Y M, JIANG D Y, WU Z H, et al. Combustion synthesis and photoluminescence of Ce3+-activated MHfO3 (M=Ba, Sr, or Ca)[J]. Materials Research Bulletin, 2005, 40(9): 1521-1526. doi: 10.1016/j.materresbull.2005.04.026 |
[24] | ANDRé R S, ZANETTI S M, VARELA J A, et al. Synthesis by a chemical method and characterization of CaZrO3 powders: Potential application as humidity sensors[J]. Ceramics International, 2014, 40(10): 16627-16634. doi: 10.1016/j.ceramint.2014.08.023 |
[25] | POLLET M, MARINEL S, DESGARDIN G. CaZrO3, a Ni-co-sinterable dielectric material for base metal-multilayer ceramic capacitor applications[J]. Journal of the European Ceramic Society, 2004, 24(1): 119-127. doi: 10.1016/S0955-2219(03)00122-5 |
[26] | RAI D P, SANDEEP, SHANKAR A, et al. Electronic and optical properties of cubic SrHfO3 at different pressures: A first principles study[J]. Materials Chemistry and Physics, 2017, 186: 620-626. doi: 10.1016/j.matchemphys.2016.11.045 |
[27] | KALINKIN A M, NEVEDOMSKII V N, KALINKINA E V, et al. Milling assisted synthesis of calcium zirconate CaZrO3[J]. Solid State Sciences, 2014, 34: 91-96. doi: 10.1016/j.solidstatesciences.2014.06.002 |
[28] | JAHN C, SCHAFF?NER S, CHRISTIAN O, et al. Investigation of calcium zirconate formation by sintering zirconium dioxide with calcium hydroxide[J]. Ceramics International, 2018, 44(10): 11274-11281. doi: 10.1016/j.ceramint.2018.03.172 |
[29] | BRIK M G, MA C G, KRASNENKO V. First-principles calculations of the structural and electronic properties of the cubic CaZrO3 (001) surfaces[J]. Surface Science, 2013, 608: 146-153. doi: 10.1016/j.susc.2012.10.004 |
[30] | CHEN J, WU S, ZHANG F, et al. Calcination temperature dependence of synthesis process and hydrogen sensing properties of In-doped CaZrO3[J]. Materials Chemistry and Physics, 2016, 172: 87-97. doi: 10.1016/j.matchemphys.2015.12.064 |
[31] | ZHAO H, DONG Y M, JIANG P P, et al. An α-MnO2 nanotube used as a novel catalyst in ozonation: Performance and the mechanism[J]. New Journal of Chemistry, 2014, 38(4): 1743-1750. doi: 10.1039/C3NJ01523H |
[32] | 刘莹, 何宏平, 吴德礼, 等. 非均相催化臭氧氧化反应机制[J]. 化学进展, 2016, 28(7): 1112-1120. |