2.成都理工大学,国家环境保护水土污染协同控制与联合修复重点实验室,成都 610059
1.State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
2.State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, China
利用植物提取液绿色合成的纳米铁,具有绿色环保、成本低廉等优点。基于此,通过对9种植物叶片提取液进行抗氧化活性的分析,筛选出了抗氧化活性较高的3种植物提取液,且利用其制备了纳米零价铁,分别为绿茶纳米铁(GT-nZVI)、石榴叶纳米铁(PG-nZVI)和红茶纳米铁(BT-nZVI)。通过沉降实验、UV-vis、SEM、FT-IR、XRD、TG等分析方法对绿色纳米铁进行了悬浮稳定性和物理化学性质的表征分析。最后,选择Cr(VI)作为目标污染物,考察了绿色纳米铁的反应活性。结果表明:GT-nZVI粒径最小(约88 nm),悬浮稳定性优于另外2种绿色纳米铁,且表面包裹了更多含C=C基团的有机物;在相同的反应条件下,反应开始的1 h内GT-nZVI对Cr(VI)的去除效果最好;借助双室一级动力学模型拟合去除Cr(VI)反应过程发现,体系中还原反应占主导作用。对不同植物提取液合成纳米铁的理化性质及其去除Cr(VI)机理的研究,将有助于增加对绿色纳米铁环境功效的理解,对于发展绿色纳米铁修复地下水污染技术具有重要的参考价值。
Plant extract based green synthesis of nano-iron particles has the advantages of low cost and environmental friendly. In this study, the oxidation resistance properties of nine typical plant leaves extracts were compared and three of them with higher antioxidation activities were chosen for the synthesis of nano-zero-iron products: green tea nano-zero-valent iron (GT-nZVI), pomegranate leaf nano-zero-valent iron (PG-nZVI) and black tea nano-zero-valent iron (BT-nZVI). The synthesized nanoparticles were characterized by UV-vis, SEM, FT-IR, XRD and TG for suspension stability and physicochemical properties. At last, Cr(Ⅵ) was selected as the model pollution compound for the reaction activity of green nano-zero-iron. The experimental results showed that the GT-nZVI had the smallest particle size(about 88 nm) and the best aqueous suspension stability than the other two green nano-irons. The surface of GT-nZVI was covered with more organic functional groups, such as C=C group. Under the same condition, GT-nZVI had the best Cr(VI) removal performance within first hour of reaction. The fitting results of the kinetic process of Cr(VI) removal by the two-compartment first order kinetic model indicated that the reduction reaction was dominant during the reaction. The study on the physicochemical properties of nano iron synthesized from different plant extracts and its removal mechanism of Cr(VI) will help to facilitates the understanding of the environmental remediation potential of nano iron particles, and provide an important reference for the development of green nano iron remediation technology of groundwater pollution.
.
Antioxidant capacity of all plant leaf extracts
UV-visible spectra of BT-nZVI, GT-nZVI, PG-nZVI, BT extract, GT extract, PG extract and FeCl
GT-nZVI、PG-nZVI和BT-nZVI的XRD图谱
X-ray powder diffraction patterns of GT-nZVI, PG-nZVI and BT-nZVI nanoparticles
GT-nZVI、PG-nZVI及BT-nZVI的SEM图
SEM image of GT-nZVI, PG-nZVI and BT-nZVI
GT-nZVI、BT-nZVI和PG-nZVI的团聚现象
Aggregation test of GT-nZVI, BT-nZVI and PG-nZVI nanoparticles
不同植物提取液及其制备的绿色纳米铁的红外光谱图
FTIR spectra of different plant leaf extracts and synthesized green nZVI
GT-nZVI、PG-nZVI和BT-nZVI的热重分析曲线
Thermo gravimetric analysis curves of GT-nZVI, PG-nZVI and BT-nZVI nanoparticles
Removal rate of hexavalent chromium by GT-nZVI, PG-nZVI and BT-nZVI with different concentrations
Hexavalent chromium removal test of GT-nZVI, PG-nZVI and BT-nZVI nanoparticles
First order reaction kinetic analysis of Cr(Ⅵ) removal using GT-nZVI, PG-nZVI and BT-nZVI nanoparticles
Kinetics fitting results of hexavalent chromium removal by GT-nZVI, PG-nZVI and BT-nZVI nanoparticles
[1] | 秦泽敏, 董黎明, 刘平, 等. 零价纳米铁吸附去除水中六价铬的研究[J]. 中国环境科学, 2014, 34(12): 3106-3111. |
[2] | KOWALSKI Z. Treatment of chromic tannery wastes[J]. Journal of Hazardous Materials, 1994, 37(1): 137-141. doi: 10.1016/0304-3894(94)85042-9 |
[3] | JENSEN P E, OTTOSEN L M, ALLARD B. Electrodialytic versus acid extraction of heavy metals from soil washing residue[J]. Electrochimica Acta, 2012, 86(1): 115-123. |
[4] | 梅丽娟, 殷仕学, 朴哲, 等. 一种耐Cr(Ⅵ)微生物筛选新方法[J]. 环境科学与技术, 2019, 42(5): 41-45. |
[5] | 许维通, 苑文仪, 李培中, 等. 机械球磨固化修复六价铬污染土壤[J]. 环境科学与技术, 2019, 42(4): 155-160. |
[6] | 王棣, 魏文侠, 王琳玲, 等. 纳米铁原位注入技术对六价铬污染地下水的修复[J]. 环境工程学报, 2018, 12(2): 521-526. doi: 10.12030/j.cjee.201706140 |
[7] | SHI M, LI J, LI X Y, et al. Reductive immobilization of hexavalent chromium by polysulfide-reduced lepidocrocite[J]. Industrial & Engineering Chemistry Research, 2019, 58(27): 11920-11926. |
[8] | 郑西来, 唐凤琳, 辛佳, 等. 污染地下水零价铁原位反应带修复技术: 理论·应用·展望[J]. 环境科学研究, 2016, 29(2): 155-163. |
[9] | 徐柳, 邹炎, 颜椿, 等. 壳聚糖包覆型纳米铁去除水中三氯乙烯实验研究[J]. 工业水处理, 2018, 38(2): 22-25. doi: 10.11894/1005-829x.2018.38(2).022 |
[10] | SAIF S, TAHIR A, CHEN Y S. Green synthesis of iron nanoparticles and their environmental applications and implications[J]. Nanomaterials, 2016, 6(11): 209. doi: 10.3390/nano6110209 |
[11] | HOAG G E, COLLINS J B, HOLCOMB J L, et al. Degradation of bromothymol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols[J]. Journal of Materials Chemistry, 2009, 19(45): 8671-8677. doi: 10.1039/b909148c |
[12] | MARTINS F, MACHADO S, ALBERGARIA T, et al. Lca applied to nano scale zero valent iron synthesis[J]. International Journal of Life Cycle Assessment, 2017, 22(5): 707-714. doi: 10.1007/s11367-016-1258-7 |
[13] | MACHADO S, PINTO S L, GROSSO J P, et al. Green production of zero-valent iron nanoparticles using tree leaf extracts[J]. Science of the Total Environment, 2013, 445: 1-8. |
[14] | MACHADO S, STAWINSKI W, SLONINA P, et al. Application of green zero-valent iron nanoparticles to the remediation of soils contaminated with ibuprofen[J]. Science of the Total Environment, 2013, 461: 323-329. |
[15] | ESSIEN E A, KAVAZ D, SOLOMON M M. Olive leaves extract mediated zero-valent iron nanoparticles: Synthesis, characterization, and assessment as adsorbent for nickel(II) ions in aqueous medium[J]. Chemical Engineering Communications, 2018, 205(11): 1568-1582. doi: 10.1080/00986445.2018.1461089 |
[16] | 郭梦羽, 翁秀兰, 曾慎亮, 等. 不同树叶提取液绿色合成纳米铁的制备及应用[J]. 环境工程学报, 2015, 9(10): 4864-4870. |
[17] | IGNAT I, VOLF I, POPA V I. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables[J]. Food Chemistry, 2011, 126(4): 1821-1835. doi: 10.1016/j.foodchem.2010.12.026 |
[18] | FENG L, YANG H, WANG F. Experimental and theoretical studies for corrosion inhibition of carbon steel by imidazoline derivative in 5% NaCl saturated Ca(OH)2 solution[J]. Electrochimica Acta, 2011, 58: 427-436. doi: 10.1016/j.electacta.2011.09.063 |
[19] | 林国庆, 李文娟. 海蒿子和三价铁溶液绿色制备纳米铁及其去除六价铬的实验研究[J]. 中国海洋大学学报(自然科学版), 2018, 48(S2): 127-133. |
[20] | HUANG L, WENG X, CHEN Z, et al. Synthesis of iron-based nanoparticles using oolong tea extract for the degradation of malachite green[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, 117: 801-804. doi: 10.1016/j.saa.2013.09.054 |
[21] | XIAO Z L, YUAN M, YANG B, et al. Plant-mediated synthesis of highly active iron nanoparticles for Cr(VI) removal: Investigation of the leading biomolecules[J]. Chemosphere, 2016, 150: 357-364. doi: 10.1016/j.chemosphere.2016.02.056 |
[22] | WANG T, JIN X Y, CHEN Z L, et al. Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater[J]. Science of the Total Environment, 2014, 466: 210-213. |
[23] | MOSTAFA L L, MEHDI F, AMIT B. Green synthesis of nano-zero-valent iron from nettle and thyme leaf extracts and their application for the removal of cephalexin antibiotic from aqueous solutions[J]. Environmental Technology, 2018, 39(9): 1158-1172. doi: 10.1080/09593330.2017.1323956 |
[24] | MANDAL S, PU S Y, WANG X K, et al. Hierarchical porous structured polysulfide supported nZVI/biochar and efficient immobilization of selenium in the soil[J]. Science of the Total Environment, 2020, 708: 134831. doi: 10.1016/j.scitotenv.2019.134831 |
[25] | 徐柳, 邹炎, 王可心, 等. 海泡石负载纳米铁去除水中三氯乙烯实验研究[J]. 水处理技术, 2018, 44(3): 45-48. |
[26] | KUMAR K M, MANDAL B K, KUMAR K S, et al. Biobased green method to synthesise palladium and iron nanoparticles using terminalia chebula aqueous extract[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013, 102: 128-133. doi: 10.1016/j.saa.2012.10.015 |
[27] | WANG Z Q, FANG C, MALLAVARAPU M. Characterization of iron-polyphenol complex nanoparticles synthesized by Sage (Salvia officinalis) leaves[J]. Environmental Technology & Innovation, 2015, 4: 92-97. |
[28] | 刘妍君, 李剑锋, 陈祖亮, 等. 纳米铁的绿色合成及其去除水中污染物研究进展[J]. 水处理技术, 2019, 45(1): 6-11. |
[29] | LIU Y, JIN X Y, CHEN Z L. The formation of iron nanoparticles by eucalyptus leaf extract and used to remove Cr(VI)[J]. Science of the Total Environment, 2018, 627: 470-479. doi: 10.1016/j.scitotenv.2018.01.241 |
[30] | EBRAHIMINEZHAD A, ZARE-HOSEINABADI A, BERENJIAN A, et al. Green synthesis and characterization of zero-valent iron nanoparticles using stinging nettle (Urtica dioica) leaf extract[J]. Green Processing and Synthesis, 2017, 6(5): 469-475. |
[31] | WEI Y F, FANG Z Q, ZHENG L C, et al. Green synthesis of fe nanoparticles using citrus maxima peels aqueous extracts[J]. Materials Letters, 2016, 185: 384-386. doi: 10.1016/j.matlet.2016.09.029 |
[32] | SHAN Z, YANG W S, ZHANG X, et al. Preparation and characterization of carboxyl-group functionalized superparamagnetic nanoparticles and the potential for bio-applications[J]. Journal of the Brazilian Chemical Society, 2007, 18(7): 1329-1335. doi: 10.1590/S0103-50532007000700006 |
[33] | JURIKOVA A, CSACH K, MISKUF J, et al. Thermal analysis of magnetic nanoparticles modified with dextran[J]. Acta Physica Polonica A, 2012, 121(5/6): 1296-1298. |
[34] | 温春宇. 表面修饰纳米铁在含水层的迁移机制和修复效能研究[D]. 长春: 吉林大学, 2018. |
[35] | 刘勇, 黄超, 翁秀兰, 等. 绿色合成纳米铁去除水中铬离子[J]. 环境工程学报, 2016, 10(8): 4118-4124. doi: 10.12030/j.cjee.201601146 |
[36] | 林国庆, 闫晓云, 庞红璐, 等. 羊栖菜提取液绿色合成纳米铁及去铬性能研究[J]. 中国海洋大学学报(自然科学版), 2018, 48(8): 118-124. |
[37] | 赵玲子, 彭小晨, 李婷, 等. 琼脂改性纳米铁去除水体中Cr(Ⅵ)的研究[J]. 辽宁化工, 2018, 47(10): 986-988. doi: 10.3969/j.issn.1004-0935.2018.10.003 |
[38] | MUHAMMAD F, XIA M, LI S, et al. The reduction of chromite ore processing residues by green tea synthesized nano zerovalent iron and its solidification/stabilization in composite geopolymer[J]. Journal of Cleaner Production, 2019, 234: 381-391. doi: 10.1016/j.jclepro.2019.06.004 |
[39] | 周书葵, 李智东, 刘迎九, 等. 纳米零价铁对铀尾矿库土壤中铀形态分布及固定效果的影响[J]. 环境工程学报, 2019, 13(7): 1727-1734. doi: 10.12030/j.cjee.201811090 |
[40] | SHI L N, ZHANG X, CHEN Z L. Removal of chromium(VI) from waste water using bentonite-supported nanoscale zero-valent iron[J]. Water Research, 2011, 45: 886-892. doi: 10.1016/j.watres.2010.09.025 |
[41] | CHRYSOCHOOU M, JOHNSTON C P, DAHAL G. A comparative evaluation of hexavalent chromium treatment in contaminated soil by calcium polysulfide and green-tea nanoscale zero-valent iron[J]. Journal of Hazardous Materials, 2012, 201-202: 33-42. doi: 10.1016/j.jhazmat.2011.11.003 |
[42] | 李超. 紫花苜蓿制备绿色纳米铁及其对废水中铅、铀及铬的去除[D]. 衡阳: 南华大学, 2017. |